

Trabalho de Conclusão de Curso Engenharia de Computação

RISCOS EM PROJETOS DE SOFTWARE: Genéricas Considerações Sobre Riscos e seu Atual Tratamento no Desenvolvimento de Sistemas

Autor(a): FABIANA FIGUEIRA SANCHES FLORES

Orientador(a): CRISTINE GUSMÃO

Recife, 2010.

FABIANA FIGUEIRA SANCHES FLORES

RISCOS EM PROJETOS DE SOFTWARE: Genéricas Considerações Sobre Riscos e seu Atual Tratamento no Desenvolvimento de Sistemas

Monografia apresentada como requisito parcial para obtenção do diploma de Bacharel em Engenharia da Computação pela Escola Politécnica de Pernambuco – Universidade de Pernambuco.

Recife, maio de 2010.

MONOGRAFIA DE FINAL DE CURSO

	Avalia	ção Final		
No dia de	de	, às : _	horas, re	uniu-se para
deliberar a defesa	da monografia	de conclusão	de curso d	do discente
				, orientado
pelo professor				
título				
a banca composta pelo	s professores:			,
1				
2.				
3				
Após a apresentação	G	discussão entre	os membros o	da Banca, a
mesma foi considerada				
□ Aprovada	□ Aprovada co	om Restrições*	□ Reprovada	
e foi-lhe atribuída nota:	()		
*(Obrigatório o preench	nimento do campo	abaixo com com	entários para o	autor)
O discente terá	_ dias para entreg	a da versão final	da monografia	a contar da
data deste documento.				
	Comentário	s da Banca		
	- Comontanto			
	Exam	inador 1		
	Exam	inador 2		
	Exam	ninador 3		

AGRADECIMENTOS

À minha família pelo incentivo, à professora Cristine Gusmão por sua orientação e aos colegas de curso Keldjan Alves e Júlio Venâncio por suas observações, externo minha gratidão.

When something can be read without effort, great effort has gone into its writing.

Enrique Jardiel Poncela

RESUMO

Devido à grande taxa de falha no desenvolvimento de *software*, são relevantes o estudo e a análise dos fatores que contribuem para este caótico contexto, tornandose útil uma compreensão mais profunda sobre os riscos e os seus impactos na gestão de projetos desta espécie. Neste trabalho, algumas das principais idéias gerais associadas aos riscos são apresentadas, seguidas por específicas breves considerações sobre os riscos em Engenharia de *Software* e pelos resultados obtidos em uma revisão sistemática destinada à identificação de estratégias e medidas atualmente empregadas no seu tratamento.

PALAVRAS-CHAVES: Risco. Riscos em *Software*. Desenvolvimento de *Software*. Engenharia de *Software*. Tratamento dos Riscos.

ABSTRACT

Due to great failure rates in software development, it is relevant studying and analyzing factors that contribute to this chaotic context, becoming useful a denser comprehension about risks and their impact in the management of projects of this kind. In this work, some of the main generic ideas associated with risks are presented, followed by specific considerations about risks in software engineering and the results of a systematic review done for identifying strategies and measures employed nowadays in their treatment.

KEYWORDS: Risk. Risks in Software. Software Development. Software Engineering. Risk Treatment.

RÉSUMÉ

En raison de grand taux d'échec dans le développement de logiciel, l'étude et la analyse des facteurs que contribuent pour ce chaotique contexte sont importants et il est utile, donc, une compréhension plus profonde au sujet de risques et de leur impacts dans la gestion de projet de cette sorte. Dans ce document, des ideés generiques associeés aux risques sont présentées, suivi par des considerations specifique sur des risques dans la ingénierie du logiciel et des conclusions obtenues avec une revision systematique au sujet des stratégies employées aujourd'hui pour identifier et traiter ce risques.

MOTS-CLÉS: Risque. Risque dans Logiciel. Logiciel Développement. Ingénierie du Logiciel. Traitement des Risques.

RESUMEN

Devido a las altas cifras de fallas en el desarrollo de *software*, son relevantes el estudio y el análisis de los factores que contribuyen para este caótico contexto, tornandose util una comprensión mas profunda cerca de los riesgos y sus impactos en la gestión de proyectos de este especie. En este documento, algunas ideas generales asociadas a los riesgos son presentadas, seguidas por específicas consideraciones cerca de los riesgos en la ingeniería de *software* y de los resultados obtenidos en una revisión sistemática para identificación de estrategias y medidas empleadas actualmente en su tratamiento.

PALABRAS-CLAVES: Riesgo. Riesgos en *Software*. Desarrollo de *Software*. Ingeniería de Software. Tratamiento de los Riesgos.

LISTA DE FIGURAS

Figura 01 -	Espécies de Riscos	021
Figura 02 -	Modelos para Gerenciamento de Riscos	026
Figura 03 -	Categorias de Atividades de Gestão de Riscos	030
Figura 04 -	Ciclo de Ações para Gestão de Riscos	030
Figura 05 -	Categorias de Métodos de Análises de Riscos	033
Figura 06 -	Diagrama de Atividades Representativo de Ações Diante	
	de Riscos	035
Figura 07 -	Classificação dos Planos de Resposta a Riscos	036
Figura 08 -	Espécies de Monitoramento de Riscos	038
Figura 09 -	Ciclos dos Riscos	039
Figura 10-	Reprodução do Formulário de Extração de Dados Definido	
	para a Revisão Sistemática Conduzida	119

LISTA DE GRÁFICOS

Gráfico 01	Taxas de Falha/ Fracasso no Desenvolvimento de	
	Software	042
Gráfico 02	Falha e Êxito no Desenvolvimento de Software (Standish	
	Group)	043
Gráfico 03 -	Origem das Fontes-Primárias Pré-Selecionadas	054
Gráfico 04 -	Pré-Seleção & Análise de Fontes-Primárias	055
Gráfico 05 -	Avaliação das Fontes-Primárias Analisadas	056
Gráfico 06 -	Distribuição das Técnicas Identificadas por Categorias ou	
	Grupos de Categorias	090
Gráfico 07 -	Representatividade do Número de Técnicas Identificadas	
	por Grupo de Categorias	091
Gráfico 08 -	Freqüência de Observação de Técnicas de Evitação e	
	Minimização Identificadas	102
Gráfico 09 -	Freqüência de Observação de Técnicas de Mitigação	
	Identificadas	102
Gráfico 10 -	Freqüência de Observação de Técnicas de Transferência	
	Identificadas	103

LISTA DE QUADROS

Quadro 01 -	Espécies de Riscos	021
Quadro 02 -	Critérios de Classificação de Riscos	023
Quadro 03 -	Modelos Nucleares de Gerenciamento de Riscos	027
Quadro 04 -	Modelos Superestruturados de Gerenciamento de Riscos	028
Quadro 05 -	Categorias de Métodos de Análises de Riscos	033
Quadro 06 -	Planos de Resposta a Riscos	036
Quadro 07 -	Técnicas de Transferência do Risco	058
Quadro 08 -	Técnicas de Evitação e Minimização dos Riscos	059
Quadro 09 -	Técnicas de Mitigação de Riscos	088
Quadro 10	Coletânea em CD dos Arquivos das Fontes-Primárias	
	Utilizadas na Revisão Sistemática	157

LISTA DE TABELAS

Tabela 01	Taxas de Falha/ Fracasso no Desenvolvimento de	
	Software	042
Tabela 02	Falha e Êxito no Desenvolvimento de Software (Standish	
	Group)	043
Tabela 03 -	Origem das Fontes-Primárias Pré-Selecionadas	053
Tabela 04 -	Pré-Seleção & Análise de Fontes-Primárias	054
Tabela 05 -	Avaliação das Fontes-Primárias Analisadas	055
Tabela 06 -	Distribuição das Técnicas Identificadas por Categorias ou	
	Grupos	056
Tabela 07 -	Distribuição das Técnicas Identificadas por Categorias ou	
	Grupos	090
Tabela 08 -	Freqüência de Observação de Técnicas de Evitação e	
	Minimização Identificadas	092
Tabela 09 -	Frequência de Observação de Técnicas de Mitigação	
	Identificadas	100
Tabela 10 -	Freqüência de Observação de Técnicas de Transferência	
	Identificadas	101

LISTA DE ABREVIAÇÕES

ABNT - Associação Brasileira de Normas Técnicas

CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

CONMETRO - Conselho Nacional de Metrologia, Normalização e Qualidade

Industrial

ETA - Event Tree Analysis

FMAE - Failure Mode and Effect Analysis

FTA - Fault Tree Analysis

HAZOP - Hazard and Operability Studies

HRA - Human Realiability Analysis

PROMISE - Project Management and Improvements in Software Engineering

UPE - Universidade de Pernambuco

SUMÁRIO

INTRODU	ÇÃO	017
1.	RISCOS NO GERENCIAMENTO DE PROJETOS	020
1.1.	RISCOS	020
1.1.1.	Definição	020
1.1.2.	Espécies	021
1.1.3.	Classificação	022
1.2.	GERENCIAMENTO DE RISCOS	024
1.2.1.	Motivação	024
1.2.2.	Objetivos	025
1.2.3.	Modelos e Atividades de Gerenciamento de Riscos	026
1.2.3.1.	Modelos	026
1.2.3.1.1.	Modelos Nucleares	027
1.2.3.1.2.	Modelos Superestruturados	028
1.2.3.2.	Atividades	029
1.2.3.2.1.	Identificação	031
1.2.3.2.2.	Análise	032
1.2.3.2.3.	Tratamento	035
1.2.3.2.4.	Reavaliação/ Monitoramento	038
1.2.4.	Implantação	039
2.	ENFRENTAMENTO DOS RISCOS NOS PROJETOS DE	
	SOFTWARE	041
2.1.	PECULIARIDADES DOS PROJETOS DE DESENVOLVIMENTO	
	DE SOFTWARE	041
2.2.	ATUAIS ESTRATÉGIAS USUAIS DE ENFRENTAMENTO DE	
	RISCOS IDENTIFICADAS MEDIANTE REVISÃO	
	SISTEMÁTICA	046
2.2.1.	Utilidade	046

2.2.2.	Referencial Teórico	047			
2.2.3.	Estrutura da Revisão	047			
2.2.3.1.	Foco & Questões	048			
2.2.3.2.	Idiomas de Pesquisa e Palavras-Chaves	048			
2.2.3.3	População de Pesquisa	049			
2.2.3.4.	Resultados Almejados e Métricas para sua Obtenção	049			
2.2.3.5.	Projeto de Experimentos	050			
2.2.3.6.	Seleção de Fontes/ Estudos Primários	050			
2.2.3.6.1.	Definição do Critério de Seleção Preliminar	050			
2.2.3.6.2.	Métodos de Busca para Identificação de Potenciais Fontes/				
	Estudos	051			
2.2.4.	Condução da Revisão Sistemática	051			
2.2.5.	Resultados	053			
2.2.5.1.	Resultados Objetivos	053			
2.2.5.2.	Resultados Subjetivos	057			
2.2.5.3.	Avaliação da Revisão	089			
2.2.5.3.1.	Síntese Geral	089			
2.2.5.3.2.	Exatidão e Robustez	104			
2.2.5.4.	Inferências e Considerações Finais	104			
3.	CONCLUSÕES	107			
REFERÊN	CIAS	110			
APÊNDICE	E A - FORMULÁRIO DE EXTRAÇÃO DE DADOS DEFINIDO				
PARA A R	EVISÃO SISTEMÁTICA CONDUZIDA	119			
APÊNDICE	B – RELAÇÃO COMPLETA DE FONTES PRÉ-SELECIONADAS				
NA REVIS	ÃO SISTEMÁTICA	120			
APÊNDICE	C – RELAÇÃO DE FONTES-PRIMÁRIAS PRÉ-SELECIONADAS				
ALEATOR	IAMENTE ANALISADAS NA REVISÃO SISTEMÁTICA				
(REPLICA	ÇÕES, EDITORIAIS E REVISÕES DE LIVROS				
INCLUSOS	6)	135			
	D – RELAÇÃO ALFABÉTICA DE FONTES-PRIMÁRIAS				
ANALISADAS NA REVISÃO SISTEMÁTICA (REPLICAÇÕES, EDITORIAIS					
E REVISÕES DE LIVROS EXCLUÍDOS) 146					
APÊNDICE E – COLETÂNEA DIGITAL DAS FONTES-PRIMÁRIAS PRÉ-					

SELECIONADAS	NA	REVIS	ÃO	SISTEM	ÁTICA	Ε	RELAÇÃO	DE	
ASSOCIAÇÃO	ENTI	RE	ARTI	GOS	E	COR	RESPONDEN	TES	
ARQUIVOS									156

INTRODUÇÃO

Genericamente, as ações humanas, independentemente de sua natureza e caracteres, cercam-se por incertezas de espécies distintas, incertezas estas potencialmente ameaçadoras/fomentadoras de empreendimentos e projetos.

Ainda que desejável em algumas situações, não há como se definir mecanismos perfeitos de blindagem absoluta a incertezas, pois, como já reconhecido na Física Tradicional (Mecânica Newtoniana e Termodinâmica, v.g.), não é possível, dados dois sistemas A e B de qualquer natureza, o estabelecimento de um isolamento completo e absoluto entre os mesmos, persistindo, desta forma, a possibilidade de mútuas e recíprocas interferências impactantes¹.

Com repercussões positivas ou negativas, as incertezas ou riscos atingem eventos e projetos de variadas natureza e complexidade. Até mesmo quando simplesmente se efetiva uma aposta em um jogo de azar (Loterias, e.g.), um indivíduo qualquer sujeita-se às repercussões referidas, podendo, simultaneamente, vir a ser beneficiado com o prêmio do citado jogo (baixa probabilidade real) ou, não vitorioso no concurso de prognósticos, apenas ser privado da importância gasta para o custeio da aposta (altíssima probabilidade real).

Em razão de sua qualificação como ser cognoscente, i.e., ser dotado da capacidade de aprendizado, o ser humano, para sua própria sobrevivência (superação das hostilidades e adversidades), efetiva, mesmo de modo inconsciente, o gerenciamento dos riscos nos eventos e contextos que reputa relevantes,

_

¹ Inferência resultante do exame das considerações tecidas por Resnick e Halliday ([1983?]) ao longo dos três primeiros volumes da obra intitulada Física.

procurando, desta forma, modelar os efeitos das mencionadas repercussões decorrentes de incertezas.

Mesmo que eventualmente desprovido de um conhecimento científico sobre gestão de riscos, o homem, mediante observação da realidade, extrai relações de causa e efeito e, assim, capacita-se, ainda que minimamente, à identificação e ao tratamento dos riscos em projetos de distintos domínios, beneficiando-se quando, em um contexto determinado, consegue, mediante tais ações, modelar elementos incertos associados a projetos².

Neste dúbio contexto de ganhos e perdas, torna-se relevante, para uma maximização do potencial de êxito no desenvolvimento de empreendimentos, o estudo formal de mecanismos para o gerenciamento de projetos e dos riscos associados, merecendo especial atenção o exame das estratégias de manipulação de riscos.

Na área de Engenharia de *Software*, este potencial promissor da análise e do adequado tratamento dos riscos mostra-se de modo ainda mais evidente, já que, apesar dos avanços operados, são altas as taxas de falha/fracasso no desenvolvimento de sistemas³ e que este é um domínio inerentemente sujeito a múltiplas incertezas⁴.

Com o propósito de se estabelecer uma compreensão mais densa sobre o tema e de se apreender idéias centrais associadas aos riscos em projetos de *software* e métodos para o seu tratamento, empreendeu-se investigação científica objetivando-se:

v.g.) para para minimizar efeitos nocivos e garantir a obtenção do resultado desejado,

² De certo modo, pode-se, em um nível abstrato e informal, considerar como projeto qualquer iniciativa humana destinada a uma finalidade específica, devendo se reconhecer, por exemplo, que o simples ato de ensinar uma criança a andar de bicicleta é um projeto. Em projetos desta espécie, é usual que os gestores do projeto sejam os genitores da citada criança. Em uma tentativa de minimizar riscos associados a este empreendimento (quedas, ferimentos e danos materiais, e.g.), os genitores, na condição de gestores dos riscos, analisam as incertezas associadas e adotam medidas preventivas (bicicleta apropriada ao tamanho da criança, buzina, espelho retrovisor, freios potentes e "rodinhas" de equilíbrio,

efetivando, ainda, o contínuo monitoramento de todo o processo.

³ A respeito do tema, é válida a consulta a Keil (2006) e Kang(2006).

⁴ Para um panorama geral das incertezas associadas ao processo de desenvolvimento de software, é interessante a consulta à seção 2.1 deste documento.

- Análise dos caracteres gerais do risco e de sua gestão;
- Identificação das principais técnicas e métodos, em Engenharia de Software, empregados no tratamento de riscos ao longo dos últimos 05 (cinco) anos, i.e, no período compreendido entre os anos de 2006 e 2010;
- Formação de conjunto de conhecimentos gerais sobre as técnicas e os métodos identificados e sua disponibilização, como insumo para futuras investigações, em benefício do projeto *OpenMPrime*⁵;
- Obtenção de substrato facilitador ou promotor da condução de futuras investigações para antevisão de novas soluções e melhoria das práticas de gestão de riscos em projetos de desenvolvimento de software.

Para se atingir tal desiderato, efetivaram-se o exame de literatura sobre riscos (riscos em geral e riscos em projetos de *software*) e uma revisão sistemática acerca de técnicas usualmente empregadas no tratamento dos riscos em Engenharia de *Software*, reproduzindo-se, nos capítulos seguintes, extratos das inferências feitas⁶.

Inicialmente, expõem-se, no capítulo 1, preliminares notas gerais acerca dos riscos e estratégias para sua abordagem.

O enfrentamento dos riscos associados ao desenvolvimento de *software* constitui-se no objeto do capítulo 2. Neste capítulo, destacam-se as peculiaridades envolvidas e os mecanismos usuais para sua abordagem, apresentando-se o resultado da referida revisão sistemática operada em publicações divulgadas ao longo dos últimos cinco anos.

Finaliza-se o relato da investigação conduzida com a adução, no capítulo 3, de inferências conclusivas a respeito do tema.

⁵ O projeto *OpenMPrime*, iniciativa coletiva em produção por integrantes de distintas faculdades integra conjunto de ações desenvolvido pelo *Project Management* and

faculdades, integra conjunto de ações desenvolvido pelo *Project Management and Improvements in Software Engineering (PROMISE)*, grupo de pesquisa da Universidade de Pernambuco (http://pma.dsc.upe.br ou http://cin.ufpe.br/~promise/).

⁶ Na redação deste documento, empregou-se o padrão formal da Língua Portuguesa sem a consideração das inovações decorrentes do Acordo Ortográfico de 1990, já que, nos termos do artigo 2º, parágrafo único, do Decreto nº 6.583/2008, admite-se, até 31 de dezembro de 2012, a coexistência das duas grafias (BRASIL, 2008) e que, ao tempo de conclusão e divulgação do presente estudo, é provável uma maior familiaridade do autor e dos potenciais interessados na investigação com o padrão de escrita anterior ao mencionado acordo.

1. RISCOS NO GERENCIAMENTO DE PROJETOS

Em face de seus potenciais efeitos, as incertezas associadas a projetos (riscos) constituem-se em importante elemento a ser considerado pelos gestores e tomadores de decisão em entidades de qualquer natureza, pois podem, em aparente contraditória dualidade, representar ameaças ou novos caminhos/oportunidades (HM TREASURY, 2004, p. 9).

Independentemente da natureza da entidade considerada, podem ser estabelecidas algumas idéias comuns acerca dos riscos, apresentando-se, nas seções seguintes, genéricas observações relacionadas à sua definição, espécies, classificação e mecanismos de abordagem.

1.1. RISCOS

1.1.1. Definição

Como anteriormente referido, podem os riscos, usualmente, serem definidos como incertezas, i.e., eventos de ocorrência não determinada potencialmente causadores de danos ou geradores de janelas/ nichos de oportunidades (COLLIER, 2009, p. 3 - 5).

1.1.2. Espécies

Embora haja múltiplas espécies de riscos, em função da perspectiva de observação e dos critérios de exame relevantes para uma entidade/organização, é corrente a qualificação dos riscos como apresentado na figura 01:

Figura 01 – Espécies de Riscos⁷.

No quadro 01, são expostas breves notas distintivas entre as espécies apresentadas na figura 01:

ESPÉCIES DE RISCOS							
ESPÉCIE		DESCRIÇÃO	EXEMPLOS				
RISCOS PROJETO	DE	Incertezas influentes no cronograma e nos recursos de um projeto	 Redução de verbas; Diminuição do quadro de funcionários; Voluntária saída de parceiros; 				
			 Equivocado dimensionamento de necessidades do projeto. 				

⁷ Figura elaborada com base nas considerações tecidas por Sommerville (2005, p. 96).

_

	ESPÉCIES DE RISCOS					
ESPÉCIE		DESCRIÇÃO	EXEMPLOS			
RISCOS PRODUTO	DE	Riscos impactantes na qualidade/ rendimento/ desempenho de um produto	 Insuficiente desempenho de elemento do produto; Insuficiente desempenho global do produto; Equivocado funcionamento do produto. 			
RISCOS NEGÓCIO	DE	Incertezas influentes na organização/ entidade	 Estabelecimento de entidade concorrente no ramo de atuação da organização; Lançamento antecipado de novo produto por entidade concorrente. 			

Quadro 01 – Espécies de Riscos⁸.

Embora sejam, como anteriormente mencionado, estabelecidas as citadas espécies de riscos, é válido se registrar a possibilidade de simultânea qualificação de uma incerteza em mais de uma das espécies referidas, já que não afastada, em absoluto, a hipótese de sua influência em mais de um dos domínios (projeto, produto ou negócio).

1.1.3. Classificação

Para facilitação da abordagem dos riscos, racionalização de recursos e seu adequado tratamento em oportuno momento, é freqüente, como observado por Pandian (2007, p. 41-56), a classificação dos riscos segundo focos e critérios distintos.

No quadro 02, apresentam-se alguns dos principais critérios empregados na classificação dos riscos e correspondentes categorias:

⁸ Quadro construído com o parcial emprego das idéias expostas por Sommerville (2005, p. 96) e com a consideração de inferências pessoais do autor do presente trabalho a partir de revisão sistemática conduzida e objeto de exposição na seção 2.2 deste documento.

	CLASSIFICAÇÃO D	OS RISCOS
CRITÉRIO	CATEGORIAS	DESCRIÇÃO
ORIGEM	Riscos Internos	Riscos oriundos da própria organização
	Riscos Externos	Riscos decorrentes do ambiente externo à organização
NATUREZA	Riscos de Negócio	Riscos ocasionados por fatores organizacionais e de mercado
	Riscos Técnicos	Riscos oriundos de questões técnicas
DOMÍNIO	Riscos de Projeto	Riscos inerentes à elaboração e à condução de um projeto
	Riscos de Processo	Ricos de inadequação/ ineficiência de processos empreendidos
	Riscos de Produto	Riscos impactantes no produto desenvolvido/ fornecido por uma organização
MÁXIMA AMPLITUDE DO IMPACTO	Riscos Catastróficos	Riscos de drásticos impactos
DO INIPACTO	Riscos Não Catastróficos	Riscos de impactos não drásticos
PROBABILIDADE DE OCORRÊNCIA	Riscos Constantes	Riscos presentes ao longo de todo o projeto
	Riscos Nominais	Riscos com probabilidade de ocorrência variada e distinta de 100% ou baixa
	Riscos Triviais	Riscos com baixa probabilidade de ocorrência
OBJETO DO PROJETO IMPACTADO	Riscos Orçamentários e de Custos	Riscos de insuficiência de recursos ou de majoração de despesas
	Riscos de Cronograma	Riscos de não atendimento do cronograma planejado
	Riscos de Objetivos	Riscos de não atingimento de objetivos
	Riscos de Requisitos	Riscos de equivocado estabelecimento de requisitos ou de modificação dos mesmos
	Riscos de Qualidade	Riscos de inadequação, inutilidade e incorreto funcionamento
	Riscos de Performance	Riscos de insuficiente desempenho
PRAZO PARA CONSUMAÇÃO DO RISCO	Riscos Imediatos	Riscos de consumação imediata a partir de sua identificação
Nisoo	Riscos a Médio Prazo	Riscos de consumação mediana, relativamente ao momento de sua identificação
	Riscos a Longo Prazo	Riscos de consumação tardia em relação ao período de sua identificação

	CLASSIFICAÇÃO D	OS RISCOS		
CRITÉRIO	CATEGORIAS	DESCRIÇÃO		
RAPIDEZ DE PRODUÇÃO DO IMPACTO		Riscos de imediata produção de conseqüências		
IMI AOTO	Riscos de Impacto Lento	Riscos não produtivos de conseqüências imediatas		
VISIBILIDADE EXTERNA	Riscos Evidentes	Riscos de plano perceptíveis		
	Riscos Moderadamente Perceptíveis	Riscos não imediatamente observáveis		
	Riscos Imperceptíveis/ Baixa Visibilidade	Riscos não perceptíveis		

Quadro 02 - Critérios de Classificação de Riscos⁹.

Como se depreende do quadro 02, mútliplos são os critérios empregáveis na classificação dos riscos (origem, natureza, domínio, probailidade de ocorrência, objeto impactado etc), sendo possível a simultânea classificação de uma mesma incerteza em mais de uma das mencionadas categorias.

Para finalidades práticas, há que se considerar, nos processos classificatórios, os interesses e objetivos da entidade e dos responsáveis pela gestão dos seus projetos.

1.2. GERENCIAMENTO DE RISCOS

1.2.1. Motivação

Em face dos potenciais efeitos decorrentes da consumação de riscos (efeitos nocivos ou oportunidades), é importante o adequado gerenciamento das incertezas a que se sujeita uma entidade. Esta relevância se configura independentemente da natureza da organização considerada, pois do gerenciamento de riscos decorrem

⁹ Quadro elaborado com o emprego das considerações tecidas por Pandian (2007, p, 41 - 56).

diversos benefícios, destacando-se¹⁰:

- Maior probabilidade de êxito no projeto e de obtenção dos resultados perquiridos;
- Menor vulnerabilidade do projeto a incertezas reputadas catastróficas e menor susceptibilidade global a riscos nocivos;
- Maior preparação e prontidão para a solução de problemas e superação de obstáculos;
- Redução dos custos envolvidos;
- Maior confiabilidade e qualidade do produto/ resultado do projeto;
- Não sujeição da entidade à adoção de ineficientes soluções/práticas precipitadas;
- Otimização de práticas e processos organizacionais e de gestão institucional;
- Facilitação dos processos de tomada de decisão;
- Favorecimento da definição de estratégias pró-ativas e de alternativas para a condução do projeto e obtenção do resultado esperado;
- Fomento da cultura de resolução de problemas e de atuação coletiva;
- Contínua melhoria do desempenho da entidade/ organização.

1.2.2. Objetivos

Em termos gerais, objetiva-se, com a gestão dos riscos em projetos, a bem sucedida conclusão do plano estabelecido, almejando-se em específico a(o):

 Redução do impacto dos danos e da possibilidade de efeitos nocivos causáveis por riscos;

¹⁰ A enumeração de benefícios apresentada resultou, em essência, do exame das considerações de Pandian (2007) e Sommerville (2005), bem como das inferências produzidas pelo autor deste documento ao conduzir revisão sistemática sobre o tema, revisão esta objeto de exposição na seção 2.2 deste trabalho.

- Fortalecimento do empreendimento/projeto e dos produtos/resultados perquiridos e sua menor vulnerabilidade a incertezas;
- Identificação de oportunidades e de nichos de crescimento.

1.2.3. Modelos e Atividades de Gerenciamento de Riscos

1.2.3.1. Modelos

Como em outras áreas de aplicação do conhecimento humano, é usual, na gestão de riscos, o estabelecimento de modelos e paradigmas norteadores de investidas individuais a esta finalidade direcionadas.

Pandian (2007, p. 24-39) propõe a classificação destes modelos/ paradigmas em duas categorias principais, representadas na figura 02:

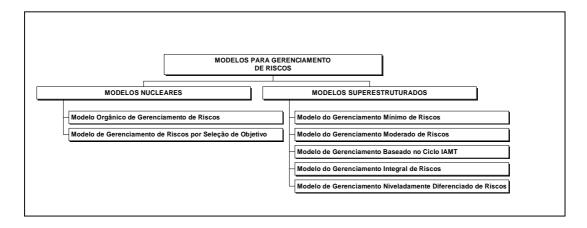


Figura 02 – Modelos para Gerenciamento de Riscos¹¹.

A diferenciação básica entre as categorias representadas na figura 02 encontra-se no grau de complexidade das ações e da estruturação dos sistemas referidos. Ainda que seja possível, pela denominação dada aos mencionados

_

¹¹ Figura elaborada a partir das observações de Pandian (2007, p. 24 – 39).

modelos, a percepção dos caracteres que lhes são essenciais, expõem-se, nas seções 1.2.3.1.1 e 1.2.3.1.2, algumas idéias sobre os mesmos.

1.2.3.1.1. Modelos Nucleares

Como mencionado anteriormente, os modelos nucleares, em essência, são simples e primitivos, não possuindo complexa estruturação.

No quadro 03, são apresentadas sucintas considerações acerca dos modelos nucleares de gerenciamento de riscos:

MODEL	OS NUCLEARES DE	GERENCIAMENTO DE	RISCOS
MODELO	DESCRIÇÃO	CARACTERES	SUPESPÉCIES
MODELO ORGÂNICO DE GERENCIAMENTO DE RISCOS	Modelo baseado integralmente na capacidade humana individual de percepção de riscos e de decisão sobre ações para seu enfrentamento/ aproveitamento	 Informalidade Oralidade Agilidade Alto Grau de Dependência de Habilidades Individuais de Percepção de Riscos e de Decisão Condução e Êxito Dependentes de Motivação dos Gestores e Colaboradores 	-
MODELO DE GERENCIAMENTO DE RISCOS POR SELEÇÃO DE OBJETIVO	Paradigma fundado na minimização da sujeição a riscos mediante eleição de atividades/ caminhos/ alternativas menos críticas/ arriscadas, considerada uma dada ótica de visualização/ objetivo	 Formalidade Alto Grau de Dependência de Habilidades Individuais de Percepção de Riscos e de Decisão Condução e Êxito Dependentes de Motivação dos Gestores e Colaboradores 	Função dos Objetivos de Projeto • Modelo de Gerenciamento em Razão de Objetivos da Produção

Quadro 03 – Modelos Nucleares de Gerenciamento de Riscos¹².

__

¹² Quadro constituído com o emprego das considerações tecidas por Pandian (2007, p. 25 – 28).

1.2.3.1.2. Modelos Superestruturados

Comparativamente aos modelos nucleares, os modelos superestruturados, como sua própria denominação indica, são mais complexos e hierarquizados, apresentando uma estruturação própria.

No quadro 04, expõem-se breves notas sobre os modelos superestruturados de gerenciamento de riscos e seus caracteres:

MODELOS SUPERESTRUTURADOS DE GERENCIAMENTO DE RISCOS			
MODELO	DESCRIÇÃO	CARACTERES	
MODELO DE GERENCIAMENTO MÍNIMO DE RISCOS	Modelo baseado na identificação, análise e comunicação/ divulgação dos riscos e relatórios associados, sem o estabelecimento de políticas para seu tratamento e a obrigatoriedade de adoção de ações concretas para solução	 Formalidade Inexistência de Plano Oficial de Ação/ Mitigação Não Obrigatoriedade de Adoção de Medidas Concretas para Tratamento dos Riscos Alto Grau de Dependência da Conscientização dos Colaboradores e do Estabelecimento de uma Cultura de Risco Condução e Êxito Dependentes da Competência e Motivação dos Colaboradores Relevância dos Sistemas de Comunicação para a Difusão/ Divulgação dos Riscos e Relatórios Associados e a Contínua Estruturação da Cultura de Risco da Entidade Inobrigatoriedade de Monitoramento/ Controle Formal 	
MODELO DE GERENCIAMENTO MODERADO DE RISCOS	partir da classificação dos	 Formalidade Existência de Plano Oficial de Ação/ Mitigação Efetividade na Adoção de Medidas Concretas para Tratamento dos Riscos Obrigatoriedade de Monitoramento/ Controle Formal dos Riscos 	
MODELO DE GERENCIAMENTO BASEADO NO CICLO IAMT	Modelo baseado no infinito e contínuo gerenciamento do risco, enquanto não concluído o projeto/ suprimida atividade da organização, mediante identificação, análise, mitigação e monitoramento/ controle dos riscos	 Formalidade Existência de Plano Oficial de Ação/ Mitigação Efetividade na Adoção de Medidas Concretas para Tratamento dos Riscos Obrigatoriedade de Monitoramento/ Controle Formal dos Riscos Iteratividade e Continuidade Infinita do Processo na Pendência de Conclusão do Projeto 	

MODELOS SUPERESTRUTURADOS DE GERENCIAMENTO DE RISCOS			
MODELO	DESCRIÇÃO	CARACTERES	
MODELO DE GERENCIAMENTO INTEGRAL DE RISCOS	Paradigma superestruturado fundado no(a): • Estabelecimento de Cultura de Riscos • Definição da Estratégia de Abordagem dos Riscos • Modelagem dos Atributos dos Riscos • Execução das Idéias IAMT de Gestão de Riscos • Gerenciamento dos Riscos do Empreendimento/ Entidade/ Organização (Gerenciamento Quantitativo e Qualitativo) • Estabelecimento de Estratégias de Gestão de Risco • Produção de Relatórios de Resposta a Riscos	 Formalidade Existência de Plano Oficial de Ação/ Mitigação Efetividade na Adoção de Medidas Concretas para Tratamento dos Riscos Utilização das Idéias IAMT de Gestão de Riscos Iteratividade e Continuidade Majoração da Amplitude do Gerenciamento de Riscos com a Inclusão neste dos Riscos a que se Sujeita a Entidade/ Organização/ Empreendimento Emprego Auxiliar de Técnicas e Métodos Científicos 	
MODELO DE GERENCIAMENTO NIVELADAMENTE DIFERENCIADO DE RISCOS	de riscos em que os riscos são tratados	 Formalidade Economia Adaptatividade e Personalização Potencial Existência de Múltiplos Planos de Ação/ Mitigação Adequados Cada um Deles a Segmentos Específicos da Organização/ Produção Efetivo Tratamento dos Riscos 	

Quadro 04 – Modelos Superestruturados de Gerenciamento de Riscos¹³.

1.2.3.2. Atividades

Efetivam-se, na gestão dos riscos, atividades de naturezas distintas, atividades estas agrupáveis nas categorias representadas na figura 03:

 $^{^{13}}$ Quadro criado com base nas notas feitas por Pandian (2007, p. 28 - 37).

Figura 03 – Categorias de Atividades de Gestão de Riscos¹⁴.

Como observado por HM Treasury (2004, p. 13), o gerenciamento de riscos não é um processo linear, sendo um empreendimento contínuo e permanente, enquanto não concluídas as atividades da aplicação em que se efetiva a mencionada gestão. Assim sendo, é usual a representação das tarefas elencadas na figura 03 sob a forma de um ciclo, como evidencia a figura 04:

Figura 04 – Ciclo de Ações para Gestão de Riscos¹⁵.

¹⁴ Ilustração elaborada com o emprego das considerações de Cox e Tait (1998, p. 6).

Como evidencia a figura 04, ao se iniciar a gestão de riscos em um projeto, procede-se à identificação das incertezas associadas, passando-se, sucessivamente, a sua análise para ulterior seleção e tratamento dos riscos relevantes.

Sendo múltiplos os riscos que podem acometer um projeto, selecionam-se, de acordo com critérios e recursos da entidade responsável pela condução do empreendimento, os mais significativos para tratamento.

Após o citado tratamento dos riscos eleitos, realiza-se o monitoramento do projeto para verificação da eficiência das medidas e estratégias adotadas.

Enquanto não concluído o empreendimento, estabelece-se um ciclo, procedendo-se à nova identificação das incertezas associadas ao projeto, a sua análise, tratamento e contínuo monitoramento.

1.2.3.2.1. Identificação

Para que se possa, efetivamente, gerir riscos, é indispensável, obviamente, sua inicial identificação. Em essência, realiza-se este processo com a condução de atividades destinadas à:

- Detecção dos riscos existentes em um dado contexto;
- Caracterização dos riscos através da identificação de seus atributos e da estimativa de seus impactos potenciais;
- Elaboração de relatório acerca dos riscos identificados e de sua relevância para um projeto/ entidade.

Entre as referidas atividades potencialmente empregadas para a identificação dos riscos, destacam-se (COLLIER, p. 79-80):

.

¹⁵ Figura obtida mediante adaptação da ilustração elaborada por HM Treasury (2004, p. 13).

- Aplicação de Questionários;
- Condução de Pesquisas e Surveys;
- Ações de Brainstorming;
- Workshops;
- Consultas às Partes Envolvidas/ Interessadas/ Impactadas pelos Riscos;
- Prototipação e Benchmarking;
- Listas de Checagem;
- Análises de Contextos/ Cenários;
- Investigação de Incidentes;
- Inspeções e Auditorias;
- Análise de Processos.

1.2.3.2.2. Análise

Identificados os riscos, passa-se a uma etapa de análise de sua importância e impactos, decidindo-se a respeito da melhor política para o seu enfrentamento/aproveitamento. Desta forma, destacam-se como objetivos perquiridos nesta etapa da gestão dos riscos:

- Melhor compreensão qualitativa e quantitativa dos riscos e dos seus atributos;
- Seleção dos riscos a serem tratados na etapa seguinte.

Para a obtenção dos referidos resultados (melhor compreensão da natureza dos riscos identificados e efetivação da apropriada seleção para tratamento), é usual o emprego de alguns métodos básicos, métodos estes agrupáveis nas categorias representadas na figura 05:

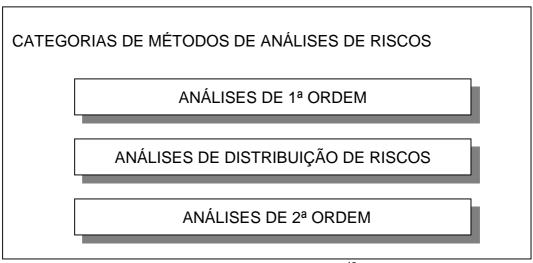


Figura 05 – Categorias de Métodos de Análises de Riscos¹⁶.

Para uma apreensão das idéias essenciais associadas às citadas categorias e métodos integrantes, apresentam-se, no quadro 05, sucintos comentários sobre os mesmos:

CATEGORIAS DE MÉTODOS DE ANÁLISES DE RISCOS				
CATEGORIA IDÉIA BÁSICA ASSOCIADA		IDÉIA BÁSICA ASSOCIADA	PRINCIPAIS MÉTODOS	
ANÁLISES DE ORDEM	1ª	Visualização Simples e Imediata dos Riscos Potencialização do Isolamento dos Riscos Críticos	= voin 1100 = 171, v.g./,	
ANÁLISES DISTRIBUIÇÃO RISCOS		Apreensão da distribuição do risco de acordo com critérios definidos	 Análise de Distribuição Interna/ Externa Análise de Distribuição dos Riscos Internos (Distribuição dos Riscos de Projeto, Produto e Processo) 	

¹⁶ Figura elaborada com base nas considerações de Pandian (2007, p. 82-83).

				 Análise por Autoria de Processo em Risco
ANÁLISES ORDEM	DE	2 ^a	Análise de Causas, Efeitos e Fatores de Impactação	 Análise Temporal Análise Causal Análise de Mapeamento de Processo Análise de Mapa de Performance

Quadro 05 – Categorias de Métodos de Análises de Riscos¹⁷.

Como atividades associadas às mencionadas categorias de métodos de análise de riscos, sobressaem-se (COLLIER, 80-91):

- Coleta de informações mediante pesquisas de mercado;
- Avaliação do risco no contexto dos planos e perspectivas futuros da organização;
- Análises Soft, i.e., análises fundadas em elementos intangíveis ou não quantificáveis, como análises baseadas em sentimentos, percepções, atitudes etc.;
- Análises estatísticas e probabilísticas;
- Simulações computacionais;
- Árvores de Decisão;
- Análises Causais (Root Cause Analysis);
- Análises FTA e ETA;
- Análises de Falhas e Efeitos (Failure Mode and Effect Analysis FMAE);
- Análises de Confiabilidade Humana (Human Realiability Analysis HRA);
- Análises de Sensibilidade;
- Avaliações Custo & Benefício;
- Análises de Opções Reais;
- Agregação de Opiniões de Especialistas (Método Delphi, v.g.);
- Estudos de Catástrofes/ Acidentes e Operabilidade (Hazard and Operability Studies – HAZOP).

¹⁷ Quadro construído com base nas observações tecidas por Pandian (2007, p. 83 – 95).

1.2.3.2.3. Tratamento

Identificados e analisados os impactos dos riscos, deve-se resolver, enquanto não concluído o projeto, acerca do posicionamento da entidade diante dos mesmos, procedendo-se, contínua e usualmente, como representado na figura 06:

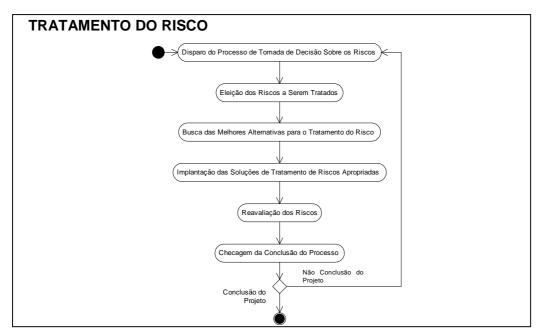


Figura 06 – Diagrama de Atividades Representativo de Ações Diante de Riscos¹⁸.

Na efetivação dos processos representados na figura 06, empreende-se, comumente, atividades diversas, como as elencadas a seguir:

- Comunicação do risco, i.e., a divulgação de sua potencial materialização para os setores envolvidos e a sua devida inserção nos registros representativos da Cultura de Risco da entidade;
- Resolução sobre a política da entidade diante do risco considerado;
- Busca por soluções/ respostas para a manipulação/ tratamento do risco;
- Eleição da melhor solução para o risco apresentado e estabelecimento de plano de ação próprio (Plano de Resposta);
- Implementação da solução eleita para o tratamento do risco;

35

¹⁸ Representação elaborada com base nas idéias expostas por Pandian (2007, p. 97 – 98).

 Reavaliação dos riscos e da situação da entidade diante de sua nova configuração.

Especificamente em relação aos planos de resposta eleitos para a solução de questões advindas de riscos, vale registrar a possibilidade de sua classificação em função de sua pretensão/ objetivo primordial, como representado na figura 07:

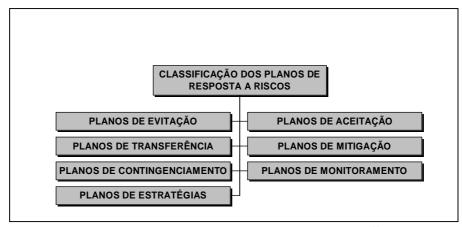


Figura 07 – Classificação dos Planos de Resposta a Riscos¹⁹.

No quadro 06, apresentam-se observações reveladoras da natureza dos citados planos:

PLANOS DE RESPOSTA A RISCOS			
ESPÉCIE	IDÉIA BÁSICA	EXEMPLOS DE ATIVIDADES	
PLANO DE EVITAÇÃO	Evitação/ desvio, se possível, de elementos com relevantes riscos associados		
		Eleição de metodologia menos ágil de desenvolvimento porém mais formal	
PLANO DE ACEITAÇÃO	Aceitação da possibilidade de consumação de riscos de menores impactos sem a adoção de medidas contra sua configuração ou para o seu aproveitamento	intencional ignorância do risco no gerenciamento do projeto e nas atividades da	

¹⁹ Figura construída a partir das idéias expostas por Pandian (2007, p. 102 – 112).

PLANOS DE RESPOSTA A RISCOS				
ESPÉCIE	IDÉIA BÁSICA	EXEMPLOS DE ATIVIDADES		
PLANO DE TRANSFERÊNCIA	Transferência do risco (postergação de tratamento e repasse de responsabilidade pelo risco, e.g.)	 Postergação do tratamento do risco Atribuição de novo responsável pela gerência do risco e de suas conseqüências (Contratação de seguro, terceirização de atividade etc.) 		
PLANO DE MITIGAÇÃO	Redução do impacto e/ ou da exposição a riscos	 Estabelecimento de reserva de recursos Fixação de prazos com margens para eventos imprevistos 		
PLANO DE CONTINGENCIAMENTO	Estabelecimento de extremas medidas alternativas na hipótese de concretização de riscos catastróficos e de grande impacto	 Definição de reserva de recursos Replicação de bases de conhecimento 		
PLANO DE MONITORAMENTO	Simples monitoramento/ acompanhamento do estado de riscos potenciais de ocorrência não imediata e de seus elementos de disparo sem a adoção de medidas para sua manipulação (enfrentamento/ aproveitamento)	dos gatilhos/ disparos dos riscos		
PLANO DE ESTRATÉGIAS	Gerenciamento global dos riscos a que uma entidade se sujeita (riscos internos externos)	 Identificação dos riscos internos da organização Detecção de potenciais pontos de melhoria na estruturação da entidade Análise do mercado Avaliação de organizações concorrentes 		

Quadro 06 – Planos de Resposta a Riscos²⁰.

²⁰ Quadro elaborado a partir das considerações de Pandian (2007, p. 102 - 112).

1.2.3.2.4. Reavaliação/ Monitoramento

Ao longo de todo o processo produtivo, enquanto não concluído o desenvolvimento e entregue o produto, há possibilidade de ocorrência de novas incertezas, sendo, assim, indispensável o contínuo monitoramento para verificação da modificação do padrão de riscos a que se sujeita a empreitada e para a averiguação da existência de alguma incerteza a requerer tratamento.

Para o monitoramento/ reavaliação de riscos, distintas estratégias podem ser empregadas, bem como diferenciados critérios para eleição das incertezas a serem observadas, havendo, portanto, como indica a figura 08, múltiplas espécies de monitoramento/ reavaliação de riscos:

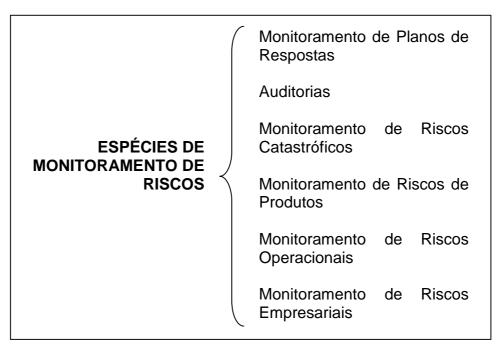


Figura 08 – Espécies de Monitoramento de Riscos²¹.

Monitorada a ocorrência de novas incertezas, estabelece-se, como anteriormente mencionado na seção 1.2.3.2, um ciclo, passando-se, como representado na figura 09, a identificar novos riscos, a analisar a necessidade de adoção de ações diante dos riscos e a tratar incertezas relevantes dentre as analisadas:

²¹ Figura elaborada a partir das considerações de Pandian (2007, 113-125).

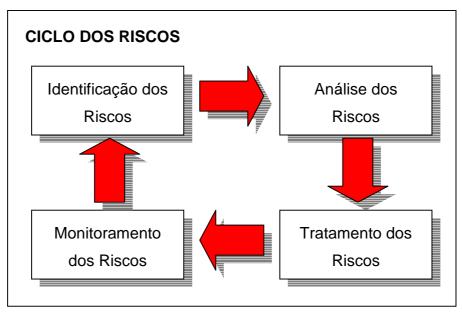


Figura 09 - Ciclo dos Riscos²².

1.2.4. Implantação

Apresentadas, nas seções anteriores, considerações acerca dos modelos e atividades de gerenciamento de riscos, faz-se necessária a exposição de breves comentários acerca da implantação de tal espécie de gestão em um projeto/organização.

De modo geral, percebe-se que a implantação de mecanismos de gestão de riscos envolve, em caráter preparatório, a realização de ações determinadas, sobressaindo-se entre estas:

- Eleição de um modelo/ paradigma nuclear de gerenciamento de riscos;
- Definição de estratégias e sistemas para defesa contra nocivos efeitos de riscos ou para aproveitamento de oportunidades;
- Estabelecimento de Cultura do Risco, i.e., de conscientização sobre a influência dos riscos na instituição e nos seus produtos, bem como de divulgação da

²² Figura construída com base nas observações de Sommerville (2004, p. 97).

importância da adoção de medidas para seu tratamento e do papel neste sentido desempenhado por cada um dos colaboradores da organização.

Implantado um sistema inicial de gerenciamento de risco, passa-se, após avaliação dos resultados preliminares obtidos com a estrutura definida, ao contínuo exame do sistema vigente, analisando-se a necessidade de sua adaptação/modificação ou de passagem a um sistema mais complexo ou superestruturado.

2. ENFRENTAMENTO DOS RISCOS NOS PROJETOS DE *SOFTWARE*

Usualmente, estratégias específicas têm sido adotadas no enfrentamento dos riscos associados aos projetos de *software*, pois a condução de tais iniciativas, atividade essencialmente sujeita a riscos, apresenta particularidades diversas.

Com o propósito de se estabelecer um panorama atual do enfrentamento mencionado, expõem-se, neste capítulo, notas sobre peculiaridades envolvidas na produção de sistemas computacionais e técnicas, mediante revisão sistemática identificadas, empregadas no tratamento dos riscos correlatos.

2.1 PECULIARIDADES DOS PROJETOS DE DESENVOLVIMENTO DE SOFTWARE

O desenvolvimento de projetos de *software*, comparativamente ao de outros projetos, tem se mostrado peculiar e complexa atividade nem sempre exitosa, como indicam a tabela 01 e o gráfico 01:

Tabela 1 – Taxas de Falha/ Fracasso no Desenvolvimento de Software

TAXAS DE FALHA/ FRACASSO NO DESENVOLVIMENTO DE SOFTWARE		
ESTUDO DE INVESTIGAÇÃO	TAXA DE FALHA/ FRACASSO	
KPMG Canada Survey (1997)	61%	
Chaos Report (1995)	83,8%	
OASIG Study (1995)	70%	

Fonte: Análise de Dados Disponibilizados por IT Cortex²³.

TAXAS DE FALHA/ FRACASSO NO DESENVOLVIMENTO DE SOFTWARE

90%
70%
60%
50%
40%
10%
KPMG Canada Survey (1997)
Chaos Report (1995)
OASIG Study (1995)

Gráfico 01 – Taxas de Falha/ Fracasso no Desenvolvimento de Software²⁴.

Apesar de ter ocorrido melhoria na taxa de êxito, como revelam a tabela 02 e o gráfico 02, ainda é alto o percentual de insucesso:

4 Gráfico produzido com base nos dados consolidados na tabela 01.

²³ Tabela construída com o emprego das considerações disponibilizadas por IT Cortex ([200?]).

Tabela 02 - Falha & Êxito no Desenvolvimento de Software (Standish Group 1994 -2009)

FALHA & ÊXITO NO DESENVOLVIMENTO DE SOFTWARE (STANDISH GROUP)				
ANO	ANO TAXA DE ÊXITO TAXA DE FALH			
1994	16%	84,00%		
1996	27%	73,00%		
1998	26%	74,00%		
2000	28%	72,00%		
2002	34%	66,00%		
2004	29%	71,00%		
2009	32%	68,00%		

Fonte: Análise de Dados Divulgados por Galorath Incorporated²⁵.

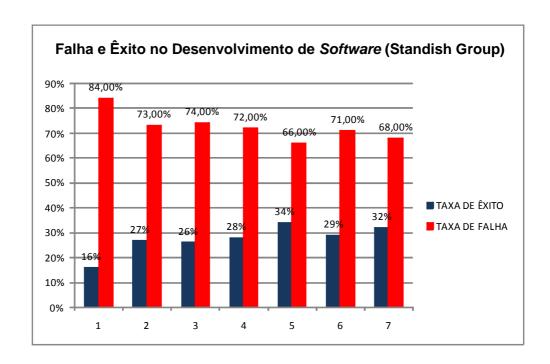


Gráfico 02 - Falha e Êxito no Desenvolvimento de Software (Standish Group)²⁶.

Em face dos números apresentados, é relevante a análise das peculiaridades minimizadoras da taxa de êxito/ sucesso no desenvolvimento de software.

43

Tabela elaborada a partir de dados disponibilizados por Galorath Incorporated ([2010?]).
 Gráfico construído a partir das informações constantes da tabela 02.

Northover e outros (2008, p. 86-87) identificam alguns elementos a contribuir para falhas no desenvolvimento em discussão:

- Existência de Múltiplas Possibilidades Hermenêuticas na Apreensão dos Requisitos do Sistema;
- Variedade Ideográfica;
- Alto Grau de Subjetividade ao Longo de Todo o Processo de Desenvolvimento;
- Impossibilidade de Exata Repetibilidade dos Procedimentos de Produção;
- Multiplicidade de Soluções para um Mesmo Problema;
- Susceptibilidade do Processo de Desenvolvimento a Influências Sócio-Culturais;
- Limitada ou Restrita Aplicabilidade da Filosofia Clássica na Engenharia de Sistemas.

Para Sommerville ([2007?], p. 13), o insucesso no desenvolvimento de sistemas deve-se a múltiplos fatores, destacando-se:

- Exiguidade dos Prazos Estabelecidos para Desenvolvimento;
- Constante Mutabilidade das Necessidades a Serem Atendidas pelo Sistema;
- Heterogeneidade dos Ambientes de Operação dos Produtos a Serem Desenvolvidos:
- Absoluta Impossibilidade de Desconsideração dos Requisitos de Confiabilidade e Segurança.

Outros aspectos, ainda, podem ser qualificados como obstáculos ao sucesso do desenvolvimento em questão²⁷:

²⁷ A relação de obstáculos apresentada resultou de inferências pessoais do autor deste documento ao conduzir revisão sistemática destinada à identificação de técnicas de tratamento de riscos em projetos de *software* atualmente empregadas. Os resultados da referida revisão encontram-se, neste documento, na seção 2.2.

- Alto Grau de Abstração dos Processos de Concepção e Desenvolvimento;
- Complexidade da Tarefa de Criação de Software;
- Alta Dependência do Produto (Composição e Qualidade Final) em Relação à Atuação e Experiências da Equipe de Desenvolvimento;
- Ineditismo de Certas Aplicações e Conseqüente Desconhecimento dos Reais Requisitos do Produto a Ser Desenvolvido;
- Constante Aumento dos Requisitos do Produto (Performance e Desempenho, v.g.);
- Inerentes Dificuldades da Estimação de Necessidades e Recursos;
- Imaturidade dos Domínios de Aplicação;
- Imaturidade da Tecnologia de Desenvolvimento da Solução;
- Usual Desconhecimento, pelos Desenvolvedores, das Regras de Negócio e de Noções Elementares à Área do Produto;
- Desconhecimento/ Superficial Conhecimento, pelos Desenvolvedores, das Tecnologias Eleitas para a Construção do Produto;
- Constante Mutabilidade das Necessidades dos Clientes e dos Ambientes de Operação dos Sistemas;
- Extrema Dependência do Produto em Relação a Tecnologias Subjacentes
 Altamente Mutantes;
- Natural Dificuldade à Adaptação de Novas Realidades e Susceptibilidade do Produto Final a Influências Externas;
- Inexistência, em determinados Domínios, de Padronização e Uniformidade;
- Ineficiência na Comunicação;
- Desconhecimento ou N\u00e3o Emprego de T\u00e9cnicas Formais na Produ\u00e7\u00e3o do Software;
- Temerária Adoção de Soluções Imediativistas Impactantes no Restante do Desenvolvimento;
- Falhas Humanas.

Do exame dos fatores anteriormente referidos e da consideração de suas potenciais repercussões na Engenharia de *Software* resulta a percepção de que

muitos são os obstáculos a serem superados, pois incertezas de distintas naturezas permeiam o processo de desenvolvimento.

Para se minimizar a taxa de falha, faz-se necessário, assim, que sejam identificados e analisados os riscos a que se sujeita o desenvolvimento de um projeto de *software*, adotando-se, ao fim, apropriadas medidas para o tratamento de tais incertezas.

Como observado no capítulo 1 deste documento, diversas são as ações passíveis de adoção para o tratamento dos riscos. Com o desiderato de se identificar as principais destas soluções atualmente adotadas, conduziu-se revisão sistemática, expondo-se na seção 2.2 o produto da investigação operada.

2.2 ATUAIS ESTRATÉGIAS USUAIS DE ENFRENTAMENTO DE RISCOS IDENTIFICADAS MEDIANTE REVISÃO SISTEMÁTICA

Com o propósito de se identificar as estratégias usualmente adotadas para o enfrentamento dos riscos em projetos de *software*, conduziu-se revisão sistemática²⁸, expondo-se, na seções seguintes, sucintas considerações sobre a investigação operada (utilidade, referencial teórico, estrutura e condução), seus resultados, e inferências decorrentes.

2.2.1. Utilidade

Antes mesmo de sua conclusão, útil se revelou a condução da investigação,

²⁸ Para uma noção específica sobre revisões sistemáticas (natureza, caracteres, objetivos, estrutuação e condução), recomenda-se consulta a: Biolchini (2005), Higgins e Green (2009); Levy e Ellis (2006) e Universidade Federal de São Paulo (2001).

pois, do processo de revisão, poderiam resultar:

- Identificação das correntemente empregadas técnicas e métodos de tratamento de riscos;
- Constatação da possibilidade de emprego de distintas soluções para um mesmo problema;
- Identificação dos principais riscos tratados por engenheiros e gerentes de projetos de software;
- Facilitação da antevisão de novas hipotéticas soluções para o tratamento de riscos em Engenharia de Software;
- Formação e disponibilização de arcabouço de conhecimentos gerais sobre técnicas e métodos de gestão de risco para o projeto OpenMPrime.

2.2.2. Referencial Teórico

Previamente ao planejamento e à condução da revisão sistemática, aprofundou-se o referencial teórico do responsável pela revisão através da leitura crítica de produções especializadas nas áreas de Revisão Sistemática, Revisão Literária, Gerência de Projetos, Gestão de Riscos, Gerência de Projetos de Software e Gestão de Riscos em Projetos de Engenharia de *Software*, estando as citadas produções elencadas na seção de referências deste documento.

No primeiro capítulo e na seção 2.1 deste texto, apresentam-se, breve e superficialmente, algumas considerações integrantes do aparato gnoseológico formado a partir das mencionadas leituras.

2.2.3. Estruturação da Revisão

Nesta subseção, apresenta-se a estruturação conferida ao processo de revisão sistemática, iniciando-se a exposição com esclarecimentos acerca das questões formuladas, critérios para identificação de fontes-primárias potencialmente úteis e sistemática de condução do estudo.

2.2.3.1. Foco & Questões

Constituiu-se no foco da pesquisa realizada a detecção das principais técnicas e métodos empregados no tratamento de riscos em projetos de *software*.

Definiram-se como problema central da investigação operada a detecção e a listagem das principais técnicas e métodos empregados atualmente, i.e, nos últimos 05 (cinco) anos, no tratamento de riscos em projetos de *software*.

Na condução do estudo feito, objetivaram-se:

- Identificação e listagem das principais técnicas e métodos empregados, nos últimos cinco anos, no tratamento de riscos em projetos de software;
- Identificação dos principais riscos-alvos das soluções de tratamento observadas.

2.2.3.2. Idiomas de Pesquisa e Palavras-Chaves

Inicialmente, almejou-se realizar investigação em publicações em quatro distintos idiomas: Inglês, Português, Espanhol e Francês.

Dado o amplo volume de referências encontradas na língua inglesa e a diversidade de nacionalidade dos redatores das fontes em inglês pré-selecionadas, optou-se, porém, por reduzir a abrangência do escopo de seleção, efetivando-se pesquisa apenas em publicações do idioma anglo.

Na revisão sistemática realizada, utilizaram-se, para a seleção preliminar de fontes de leitura, operadores lógicos de concatenação de resultados de buscas²⁹, sites especializados em divulgação de publicações de conteúdo acadêmico e os conjuntos de expressões a seguir elencados:

"PROJECT RISK" AND "MANAGEMENT"

²⁹ Empregaram-se operadores equivalentes à adição e à alternatividade lógica (Operadores AND e OR), na forma especificamente definida em cada fonte de recursos pesquisada.

- "PROJECT RISK" AND "MANAGEMENT" AND ["SOFTWARE ENGINEERING" OR "SOFTWARE DEVELOPMENT"]
- "PROJECT RISK MANAGEMENT"
- "PROJECT RISK MANAGEMENT" AND "SOFTWARE"
- "RISK" AND "PROJECT" AND "MANAGEMENT"
- "RISK" AND "TECHNIQUE" AND "SOFTWARE" AND "PROJECT" AND "MANAGEMENT"
- "RISK ASSESSMENT" AND "SOFTWARE PROJECT" AND "MANAGEMENT"
 AND "METHOD"
- "SOFTWARE PROJECT RISK MANAGEMENT"
- "SOFTWARE RISK"

2.2.3.3. População de Pesquisa

A população de pesquisa do estudo formou-se, em essência, por publicações dos últimos cinco anos (artigos e *papers*) na área de Engenharia de *Software* que tenham lidado, direta ou indiretamente, com riscos e o seu gerenciamento.

2.2.3.4. Resultados Almejados e Métricas para sua Obtenção

Com a condução da revisão proposta, perquiriu-se o tratamento dos riscos em projetos de *software*, almejando-se a obtenção de listagem das técnicas e métodos correntemente empregados e dos riscos-alvos dos mesmos.

Para a avaliação dos resultados obtidos, definiram-se como indicadores e métricas:

- Número de Fontes-Primárias Pré-Selecionadas;
- Número de Fontes-Primárias Pré-Selecionadas Efetivamente Examinadas;
- Número de Fontes-Primárias em que Foram Identificadas Técnicas de Tratamento de Riscos;
- Número de Técnicas/ Métodos Identificados.

Estabeleceu-se como meta inicial a análise de 500 (quinhentos) estudos primários (Número de Fontes-Primárias Pré-Selecionadas). Na eventual impossibilidade de integral exame de todas as quinhentas fontes pré-selecionadas, definiu-se como razoável a análise de quantitativo superior a 70% (setenta por cento) deste valor (Número de Fontes-Primárias Pré-Selecionadas Efetivamente Examinadas).

Os demais indicadores (Número de Fontes-Primárias em que Foram Identificadas Técnicas de Tratamento de Riscos e Número de Técnicas/ Métodos Identificados) foram fixados como métricas para os resultados da revisão.

2.2.3.5. Projeto de Experimentos

Optou-se por realizar breves análises estatístico-matemáticas dos dados buscados, pretendo-se obter:

- Quantitativo de estudos aproveitados;
- Razão de aproveitamento e descarte de fontes-primárias;
- Total de técnicas de tratamento de riscos identificadas:
- Distribuição de métodos identificados por categoria ou grupo de categorias de técnicas identificadas;
- Frequência, em uma categoria/ grupo de categorias de técnicas, de referências a um mesmo método de tratamento de riscos.

2.2.3.6. Seleção de Fontes/ Estudos Primários

2.2.3.6.1. Definição do Critério de Seleção Preliminar

Para a inicial seleção de fontes primárias, estabeleceu-se que somente seriam objeto de análise os recursos/ documentos que, simultaneamente, atendessem aos critérios a seguir enumerados:

- Publicação do recurso nos últimos cinco anos, i.e, no período compreendido entre os anos de 2006 e 2010;
- Divulgação do estudo primário (paper, artigo ou periódico) sob a forma eletrônica;
- Inclusão, na fonte primária, de informações sobre a aplicação efetiva ou potencial de técnica/ método de tratamento de risco;
- Vinculação do estudo ou de seus responsáveis a Universidade/ Centro de Pesquisa.

2.2.3.6.2. Métodos de Busca para Identificação de Potenciais Fontes/ Estudos

Para a busca das fontes primárias, empreenderam-se consultas a:

- Ferramentas web de pesquisa de conteúdo (Yahoo, Google e Altavista);
- Sites especializados na publicação de conteúdo acadêmico (Academic Search Premier³⁰, Citeseer³¹, Emerald³², Google Scholar³³, IEEE Xplore³⁴, Wiley Interscience³⁵ e ScienceDirect³⁶).

2.2.4. Condução da Revisão Sistemática

Definida a estruturação do processo de revisão, passou-se ao procedimento de pré-seleção de estudos primários, i.e., identificação de fontes potencialmente

³⁵ Serviço on-line de acesso a publicações científicas acessível através do endereço http://www3.interscience.wiley.com.

Repositório digital de textos científicos acessível no endereço http://search.ebscohost.com.
 Biblioteca digital de produções científicas disponível em http://citeseerx.ist.psu.edu.

³² Site especializado na divulgação de conteúdo sobre Gerência, acessível através do endereço http://www.emeraldinsight.com.

³³ Portal de busca de publicações acadêmicas encontrado em http://scholar.google.com.

³⁴ Biblioteca digital disponível no endereço http://www.ieeexplore.ieee.org.

Repositório on-line de artigos e capítulos de textos científicos disponível em http://www.sciencedirect.com.

relevantes, empregando-se, em tal tarefa, os critérios de seleção preliminar referidos na seção 2.2.3.6.1 e a estratégia de busca exposta na seção 2.2.3.6.2.

Inicialmente, pretendeu-se revisar 500 (quinhentas) fontes primárias, procedendo-se, então à seleção das mesmas consoante critérios expostos anteriormente³⁷.

Selecionados os estudos originais, foi realizada a leitura dos seus *abstracts/* resumos. Visualizada preliminarmente a potencial utilidade de uma fonte, foi efetivado o exame de seu conteúdo integral.

Não vislumbrada, na análise do resumo/ abstract, utilidade em um determinado estudo, efetivou-se o seu descarte.

Qualificaram-se positivamente, i.e., como estudos primários úteis à revisão conduzida, as fontes produzidas ou divulgadas em Universidades/ Centros de Pesquisa ao longo dos últimos 05 (cinco) anos com explícita referência, em seu conteúdo, a técnicas/ métodos/ estratégias de tratamento de risco em projetos de software e correspondentes usos associados.

Negativamente se qualificaram para os fins desta revisão e, assim, foram descartados os estudos primários:

- Divulgados há mais de 05 (cinco) anos;
- Não focados na área de Engenharia de Software ou no desenvolvimento de sistemas:
- Não associados a Universidade/ Centro de Pesquisa;
- Silentes acerca do tratamento de risco e de sua específica aplicação.

Concluída a pré-qualificação das publicações, teve lugar a extração de dados.

Durante o processo de extração de dados, empreenderam-se, com foco na verificação da existência de menção a técnica/ método de tratamento de risco e da incerteza associada, as seguintes ações:

³⁷ Para a aferição da hipotética utilidade das fontes obtidas, procedeu-se, no início da préseleção das fontes, à leitura integral de restrito conjunto de fontes (amostras) obtidas com buscas, nos *sites* especializados, a partir das expressões e termos definidos para a pesquisa.

- Leitura do Conteúdo Integral do Estudo Primário;
- Síntese das Idéias Apresentadas no Documento Relacionadas a Técnicas/
 Métodos de Tratamento de Riscos;
- Preenchimento do Formulário de Extração de Dados³⁸.

2.2.5. Resultados

O processo de revisão deu causa à seleção de 500 (quinhentos) estudos eletronicamente divulgados, apresentando-se, no apêndice B, relação de tais documentos³⁹ e, nas subseções seguintes, observações sobre os principais resultados obtidos.

2.2.5.1. Resultados Objetivos

Como mencionado anteriormente, selecionaram-se 500 (quinhentas) fontesprimárias. Na tabela 03 e no gráfico 03, registra-se a origem dos citados estudos:

Tabela 03 – Origem das Fontes-Primárias Pré-Selecionadas

ORIGEM DAS FONTES PRIMÁRIAS PRÉ-SELECIONADAS		
REPOSITÓRIO QUANTITATIVO DE FONTES PRÉ-SELECIONADAS		
Academic Search Premier	068	
Citeseer	136	
Emerald	012	
GoogleScholar	015	
IEEE Xplore	038	
Wiley InterScience	005	
ScienceDirect	226	
TOTAL	500	

Fonte: Análise de Dados Extraídos ao Longo do Processo de Revisão Sistemática Conduzido⁴⁰.

³⁸ Reprodução do formulário definido para a revisão sistemática conduzida é apresentado no quadro 10 (apêndice A).

³⁹ Coletânea em CD e relação dos correspondentes arquivos das fontes-primárias utilizadas (quadro 11) encontram-se disponíveis no apêndice E.

⁴⁰ Tabela produzida com a análise dos resultados obtidos na pré-seleção de fontes-primárias para o estudo.

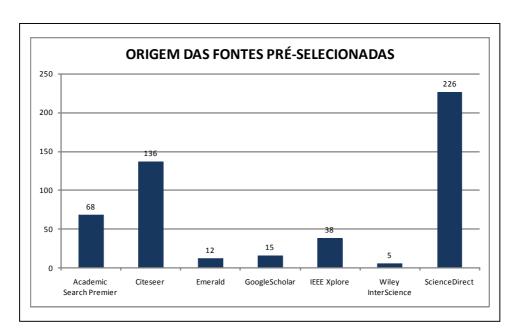


Gráfico 03 – Origem das Fontes-Primárias Pré-Selecionadas⁴¹.

Apesar de, inicialmente, ter sido estabelecida a meta de pesquisa às 500 (quinhentas) publicações pré-selecionadas, não foi possível, em face da amplitude da pretensão, dos diminutos prazos definidos para a conclusão de atividades e do restrito número de indivíduos a participar do processo de revisão (apenas um), o exame de todas as fontes pré-selecionadas.

Conseguiu-se, entretanto, aleatoriamente analisar considerável fração da meta originariamente definida (apêndices C e D), como se depreende da observação da tabela 04 e do gráfico 04:

Tabela 04 – Pré-Seleção & Análise de Fontes-Primárias

PRÉ-SELEÇÃO & ANÁLISE DE FONTES-PRIMÁRIAS					
SITE DE OBTENÇÃO DA PUBLICAÇÃO	FONTES EFETIVAMENTE ANALISADAS				
Academic Search Premier	068	066			
Citeseer	136	090			
Emerald	012	012			
Google Scholar	015	015			
IEEE Xplore	038	038			
Wiley InterScience	005	004			
ScienceDirect	226	138			
TOTAL 500 363					

Fonte: Análise de Dados da Revisão Sitemática⁴².

⁴¹ Gráfico elaborado a partir dos dados constantes da tabela 03.

⁴² Tabela construída com a análise do exame das fontes pré-selecionadas e efetivamente analisadas.

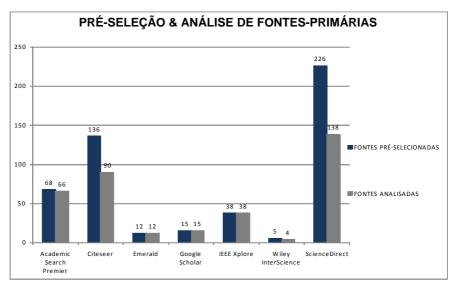


Gráfico 04 – Pré-Seleção & Análise de Fontes-Primárias⁴³.

Ao se realizar a leitura das publicações pré-selecionadas, constatou-se a inclusão de revisões de livros e editoriais nas mesmas e a ocorrência de múltipla publicação de um mesmo trabalho em distintos repositórios. Procedendo-se à exclusão destes elementos (revisões, editoriais e replicações) por sua não qualificação nos termos definidos na seção 2.2.4, passou-se a trabalhar, efetivamente, com 324 (trezentas e vinte e quatro) publicações.

Do integral exame destes 324 (trezentos e vinte e quatro) documentos científicos com o emprego do protocolo definido para a revisão, resultaram o descarte de 231 (duzentas e sessenta e uma) publicações e o aproveitamento de 93 (noventa e três) fontes-primárias, como demonstram a tabela 05 e o gráfico 05:

Tabela 05 – Avaliação das Fontes-Primárias Analisadas

FONTES ANALISADAS	QUANTITATIVO	
Fontes Descartadas	231	
Fontes Aproveitadas 093		
TOTAL	324	

AVALIAÇÃO DAS FONTES-PRIMÁRIAS ANALISADAS

Fonte: Avaliação de Dados das Fontes-Primárias Analisadas Durante a Revisão Sistemática⁴⁴.

 ⁴³ Gráfico elaborado a partir dos dados da tabela 04.
 44 Tabela construída a partir do exame das fontes analisadas.

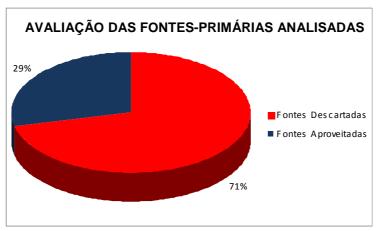


Gráfico 05 – Avaliação das Fontes-Primárias Analisadas⁴⁵.

Verificou-se, nas fontes-primárias positivamente qualificadas, a existência de referência a técnica/ método de tratamento do risco em 53 (cinquenta e três) distintas publicações, sendo expostos, na tabela 06, dados relativos à natureza das técnicas identificadas⁴⁶:

Tabela 06 – Distribuição das Técnicas Identificadas por Categorias ou Grupos

DISTRIBUIÇÃO DAS TÉCNICAS IDENTIFICADAS POR **CATEGORIAS OU GRUPOS**

CATEGORIA/ GRUPO D CATEGORIA DE TÉCNICA	E Nº DE TÉCNICA IDENTIFICADAS
Aceitação	01
Transferência	03
Evitação e Minimização	81
Mitigação	06
Contingenciamento	01
Total	92

Fonte: Análise dos Dados da Revisão Sistemática⁴⁷.

⁴⁵ Gráfico elaborado com o emprego dos dados constantes da tabela 05.

56

⁴⁶ Para eventual revisão sobre os caracteres e elementos essenciais das categorias de técnicas de tratamento referidas na tabela 06, é recomendável o exame das considerações expostas na seção 1.2.3.2.3 deste documento. ⁴⁷ Tabela obtida mediante análise das fontes-primárias integralmente analisadas.

Como revela a tabela 06, optou-se pelo tratamento conjunto das técnicas de evitação e minimização, eis que uma mesma técnica pode, simultaneamente, ser utilizada com estes dois propósitos ou proporcionar estes dois resultados, pois uma técnica inicialmente identificada como sendo de evitação pode, apesar de sua ineficiência para a perfeita evitação do risco, produzir a sua minimização e, de modo similar, uma técnica inicialmente qualificada como sendo de minimização pode se mostrar tão eficaz que evite a consumação do evento incerto.

2.2.5.2. Resultados Subjetivos

Nas subseções seguintes, apresentam-se, por categoria, considerações acerca das técnicas de tratamento identificadas com a revisão sistemática operada⁴⁸.

Em virtude da potencial qualificação de uma mesma técnica de minimização como sendo método de evitação, as observações pertinentes a estas duas categorias são expostas conjuntamente.

Técnicas de Aceitação

Nesta categoria de técnica de tratamento de risco, apenas a deliberada aceitação foi identificada.

Em situações e contextos determinados, aceita-se deliberadamente o risco, postergando-se, para momento futuro, o processo de tomada de decisão sobre ações para o seu tratamento, caso, de fato, concretizem-se os eventos incertos.

Efetiva-se, desta forma, a deliberada desconsideração destes riscos na condução do projeto (riscos fora do escopo, riscos rotulados como "tabus" e riscos

⁴⁸ Na hipotética necessidade de esclarecimentos acerca de idéias elementares sobre as técnicas nesta seção referidas, é útil a análise das notas tecidas na seção 1.2.3.2.3 deste texto.

de incertezas), almejando-se, em essência, a limitação do número de riscos gerenciáveis.

• Técnicas de Transferência

Para a transferência do risco, foram identificadas, nas publicações analisadas, as seguintes técnicas:

- Criteriosa e Adequada Seleção e Utilização de Componentes Terceirizados de Software a Serem Incluídos no Sistema em Desenvolvimento
- Exclusivos Aquisição e Emprego de Componentes Certificados de Software
 Terceirizado
- Contratação de Seguro/ Garantia para o Projeto/ Desenvolvimento do Sistema.

No quadro 07, expõem-se os riscos-alvos das técnicas citadas:

TÉCNICAS DE TRANSFERÊNCIA DO RISCO			
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS		
Criteriosa e Adequada Seleção e Utilização de Componentes Terceirizados de <i>Software</i> a Serem Incluídos no Sistema em Desenvolvimento	 Seleção de Componente Terceirizado Inútil/ Inadequado/ Incompatível Seleção de Componente Defeituoso/ Falho aos Propósitos de Desenvolvimento ou do Produto Falha no Produto Problemas na Utilização dos Componentes Adquiridos (Incompatibilidade, Insucesso/ Equívoco na Integração, Dispêndio Ineficiente de Recursos para Seu Emprego etc.) Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.) 		

TÉCNICAS DE TRANSFERÊNCIA DO RISCO		
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS	
Exclusivos Aquisição e Emprego de Componentes Certificados de Software Terceirizado	 Aquisição de Componente Terceirizado Inútil/ Inadequado/ Incompatível Uso de Componente Defeituoso/ Falho aos Propósitos de Desenvolvimento ou do Produto Falha no Produto Problemas na Utilização dos Componentes Adquiridos (Incompatibilidade, Insucesso/ Equívoco na Integração, Dispêndio Ineficiente de Recursos para Seu Emprego etc.) Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.) 	
Contratação de Seguro/ Garantia para o Projeto/ Desenvolvimento do Sistema	Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.)	

Quadro 07 – Técnicas de Transferência do Risco⁴⁹.

• Técnicas de Evitação e Minimização

O amplo universo de técnicas de evitação e minimização identificadas é, em face das razões expostas na seção 2.2.5.1, conjuntamente apresentado no quadro 08:

TÉCNICAS DE EVITAÇÃO E MINIMIZAÇÃO DOS RISCOS			
TÉCNICAS IDENTIFICADAS			RISCOS-ALVOS
Ajuste da Oferta/ Proposta Contratação com a Fixação Restrições no Escopo Desenvolvimento	de de do	N R	Seleção de Projeto de Desenvolvimento ão Interessante (Potencialmente Não entável) ispêndio Ineficaz ou Inútil de Recursos xaustão de Recursos racasso no Desenvolvimento do istema

⁴⁹ Quadro construído com base na revisão sistemática conduzida.

TÉCNICAS DE EVITAÇÃO E MINIMIZAÇÃO DOS RISCOS		
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS	
	 Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) 	
Algoritmos Genéticos na Busca de Melhores Soluções para a Integração de Módulos do Sistema	 Eleição de Dificultosa Estratégia de Integração Ineficiente Alocação de Recursos na Integração Descumprimento das Condições Estabelecidas para a Integração Fracasso na Integração Fracasso no Desenvolvimento Falha no Produto Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.) 	
Algoritmos Genéticos na Seleção das Melhores Soluções de Agendamento do Projeto	 Ineficiente Alocação de Recursos Inadequado Dimensionamento do Projeto Descumprimento das Condições Estabelecidas para o Projeto (Gastos, Prazos e Requisitos) Fracasso no Desenvolvimento Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.) 	
Auditorias Independentes em Marcos do Projeto para Análise do Mesmo e Definição de Ações e Planos para Enfrentamento de Riscos	 Descumprimento das Condições do Projeto Desenvolvimento de Produto Falho ou Não Atendente dos Requisitos Estabelecidos Tardia Adoção de Medidas Corretivas para Conclusão do Projeto Susceptibilidade dos Gerentes de Projeto às Suas Próprias Idéias e Conseqüente Não Visualização de Ameaças e Falhas no Projeto 	

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
Conscientização dos Contratantes e Usuários a Respeito dos Impactos dos Requisitos e Funcionalidades Desejados na Segurança e Confiabilidade do Sistema	 Geração de Falsa Expectativa Quanto à Segurança e Confiabilidade do Sistema Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.)
Contínua Atualização Mercadológica	 Estagnação Organizacional Despreparo para o Emprego de Novas Tecnologias Ineficiência na Produção de Software Obsolescência Inexistência de Espaço para Inovação Desmotivação da Equipe Produto Falho ou Pouco Qualificado Ineficiente Emprego de Recursos Descumprimento de Condições do Projeto Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos etc.)
Contínua Avaliação Qualitativa dos Fornecedores de Componentes	 Aquisição de Componente Terceirizado Inútil/ Inadequado/ Incompatível Uso de Componente Defeituoso/ Falho aos Propósitos de Desenvolvimento ou do Produto Falha no Produto Problemas na Utilização dos Componentes Adquiridos (Incompatibilidade, Insucesso/ Equívoco na Integração, Dispêndio Ineficiente de Recursos para Seu Emprego etc.) Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.)

TÉCNICAS DE EVITAÇÃO	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
Contínua Capacitação e Atualização em Gestão de Projetos	 Ineficiente Gerência de Projetos Inadequado Tratamento de Riscos Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Descumprimento das Condições do Projeto Dispêndio Ineficiente ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Falhas no Produto
Convencimento da Parte Interessada, em Benefício da Segurança e Confiabilidade, Sobre a Importância de Eventual Subdimensionamento de Objetivos e Expectativas	 Geração de Falsa Expectativa Quanto à Segurança e Confiabilidade do Sistema Fracasso no Desenvolvimento do Sistema Descumprimento de Condições do Projeto Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Desenvolvimento, sob a Perspectiva do Tomador do Serviço, de Insatisfação Quanto ao Produto e ao Projeto (Qualidade, e.g.)
Criteriosa e Adequada Seleção e Utilização de Componentes Terceirizados de Software a Serem Incluídos no Sistema em Desenvolvimento	 Seleção de Componente Terceirizado Inútil/ Inadequado/ Incompatível Seleção de Componente Defeituoso/ Falho aos Propósitos de Desenvolvimento ou do Produto Falha no Produto Problemas na Utilização dos Componentes Adquiridos

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
	 (Incompatibilidade, Insucesso/ Equívoco na Integração, Dispêndio Ineficiente de Recursos para Seu Emprego etc.) Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.) Retrabalho, i.e., "Reinvenção da Roda"
Criteriosa Seleção e Emprego de Adequado Modelo para a Definição dos Requisitos do Sistema em Desenvolvimento	 Equivocada Definição dos Requisitos do Sistema Falhas no Produto Enganosa Delimitação dos Recursos e Prazos de Desenvolvimento
Criticidade e Reserva Quanto ao Futuro da Organização, às Perspectivas do Desenvolvimento de Software no Mercado e à Adoção de Novos Valores e Idéias	 Injustificado Otimismo dos Gerentes de Projeto e Integrantes da Equipe de Desenvolvimento Precipitada Adoção de Novas Tecnologias Temerária Redefinição do Foco de Atuação da Organização Produtora de Software Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficiente ou Inútil de Recursos Exaustão de Recursos Descumprimento das Condições de Projetos Fracasso no Desenvolvimento de Sistemas Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Desenvolvimento de Produto Falhos
Definição de "Margens de Segurança" (Replicações ou Reservas Potenciais) para Uso e Alocação de Recursos	 Perda de Prazos Exaustão de Recursos Impossibilidade de Conclusão do Projeto Fracasso no Desenvolvimento do Sistema Falhas no Produto

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
	 Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Esgotamento da Equipe de Desenvolvimento
Definição de Cronograma de Atividades	 Ineficiência na Gestão do Projeto Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Não Adoção ou Tardia Implementação de Ações Corretivas Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Falhas no Produto
Definição de Pontos de Checagem para Avaliação dos Resultados Parciais de Integrações de Módulos do Sistema	 Problemas na Integração de Módulos do Sistema (Incompatibilidades, Insucesso, Equivocada Integração, Tardia Integração etc.) Dispêndio Ineficiente de Recursos na Integração Falha no Produto Complexidade da Integração Final Requerida Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.)
Definição e Emprego de Critérios de "Interesse e Viabilidade" na Seleção de Projetos a Serem Desenvolvidos (Projetos Potencialmente Exitosos e Rentáveis)	 Seleção de Projeto de Desenvolvimento Não Interessante (Potencialmente Não Rentável) Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
	Sistema • Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.)
Definição e Emprego de Métricas para Guia do Gerenciamento de Qualidade do Projeto	 Descumprimento das Condições do Projeto Desenvolvimento de Produto Falho ou Não Atendente dos Requisitos Estabelecidos Tardia Adoção de Medidas Corretivas para Conclusão do Projeto
Definição e Emprego de Modelo de Interligação entre Mecanismos de Coordenação e Práticas de Identificação de Diferenças de Percepção nos Requisitos do Sistema	Tardio Diagnóstico de Equívocos na Identificação de Requisitos do Sistema em Desenvolvimento
Definição e Emprego de Paradigmas de Agendamento do Desenvolvimento	 Ineficiente Alocação de Recursos Inadequado Dimensionamento do Projeto Descumprimento das Condições Estabelecidas para o Projeto (Gastos, Prazos e Requisitos) Fracasso no Desenvolvimento Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.)
Elaboração e Uniforme Emprego de Linguagem para o Gerenciamento de Riscos em Sistemas de Informação	 Desconhecimento, na Organização, sobre as Políticas de Gerenciamento de Riscos Ineficiente Tratamento de Riscos Retrabalho na Gestão de Riscos Dispêndio Ineficiente de Recursos Exaustão de Recursos Fracasso na Conclusão de Projetos Desenvolvimento de Produto Falho Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
	Organização Produtora de Software, Desmotivação da Equipe etc.)
Emprego Congruente de Clones de Código	 Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficiente ou Inútil de Recursos Exaustão de Recursos Retrabalho Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Desenvolvimento de Produto Falho
Esforços Adicionais na Análise dos Requisitos do Sistema e no Planejamento e na Condução do seu Desenvolvimento	 Desconhecimento ou Equivocado Conhecimento das Necessidades e Expectativas da Parte Interessada em Relação ao Produto em Desenvolvimento Falha na Definição dos Requisitos do Sistema Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Desenvolvimento de Produto Falho

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
Estabelecimento de Comunicação Efetiva, Amigável e Confiável com a Parte Interessada no Sistema (Solicitantes e Usuários), i.e., Definição de "Comunicação Direta"/ "Coordenação Horizontal"	 Desconhecimento ou Equivocado Conhecimento das Necessidades e Expectativas da Parte Interessada em Relação ao Produto em Desenvolvimento Falha na Definição dos Requisitos do Sistema Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Desenvolvimento de Produto Falho
Estabelecimento e Emprego de Modelos de Documentação do Projeto e Paradigmas de Integração destes Documentos	 Segregação de Informação Desconhecimento, por Parte da Equipe de Desenvolvimento, de Dados Essenciais Produzidos por Integrantes Outros da Organização Burocratização Ineficiência Global Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Desenvolvimento de Produto Falho

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
Estabelecimento e Emprego de Modelos de Documentação do Projeto e Paradigmas de Integração destes Documentos	 Segregação de Informação Desconhecimento, por Parte da Equipe de Desenvolvimento, de Dados Essenciais Produzidos por Integrantes Outros da Organização Burocratização Ineficiência Global Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficiente ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Desenvolvimento de Produto Falho
Estabelecimento e Emprego de Políticas de Segurança para Proteção da Organização Produtora de Software	 Perdas de Dados, Subprodutos e Produtos por Invasões e Acessos Indevidos Perda de Prazos Dispêndio Ineficiente ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Falhas no Produto
Estabelecimento, em Projetos Complexos ou Grandes, de Subgrupos de Desenvolvimento Coordenados Cada um por um Representante Seu	 Complexidade do Sistema Ineficiência na Comunicação Aumento da Complexidade da Gestão da Equipe Equivocado Dimensionamento de Recursos

TÉCNICAS DE EVITAÇÃO	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
	 Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Descumprimento das Condições do Projeto Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Falhas no Produto
Estratégias de Motivação da Equipe de Desenvolvimento na Aceitação de Novas Tecnologias e/ ou na Evitação do seu Imediato Repúdio	 Repúdio/ Não Aceitação de Nova Tecnologia de Desenvolvimento Estagnação do Processo de Produção de Software Diminuição do Portfólio de Potenciais Clientes Prejuízos Diversos à Organização Produtora de Software (Danos Patrimoniais e à Imagem, e.g.)
Estratégias Suplementares para Redução de Discrepâncias na Percepção de Requisitos entre a Parte Interessada e os Desenvolvedores do Sistema (Inquirição de Usuários, Derivação de Requisitos a Partir de Sistemas Pré-Existentes, Síntese de Requisitos Mediante Observação e Análise das Atividades do Usuário etc.)	 Desconhecimento ou Equivocado Conhecimento das Necessidades e Expectativas da Parte Interessada em Relação ao Produto em Desenvolvimento Falha na Definição dos Requisitos do Sistema Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Desenvolvimento de Produto Falho

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
Evitação da Excessiva Identificação de Riscos com Vistas ao Afastamento de Irracional Otimismo Injustificado na Condução do Projeto (Definição de Prazos e Métricas, e.g.)	 Injustificado Otimismo dos Gerentes de Projeto e Integrantes da Equipe de Desenvolvimento Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficiente ou Inútil de Recursos Exaustão de Recursos Descumprimento das Condições do Projeto Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Desenvolvimento de Produto Falho
Exclusivos Aquisição e Emprego de Componentes Certificados de Software Terceirizado	 Aquisição de Componente Terceirizado Inútil/ Inadequado/ Incompatível Uso de Componente Defeituoso/ Falho aos Propósitos de Desenvolvimento ou do Produto Falha no Produto Problemas na Utilização dos Componentes Adquiridos (Incompatibilidade, Insucesso/ Equívoco na Integração, Dispêndio Ineficiente de Recursos para Seu Emprego etc.) Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.) Retrabalho, i.e., "Reinvenção da Roda"
Ferramentas/ Matrizes de Estimativa de Escopo	 Falha na Definição dos Requisitos do Sistema Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Descumprimento das Condições do Projeto

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
	 Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Desenvolvimento de Produto Falho
Fixação de Marcos para Entrega, ao Longo do Processo de Desenvolvimento, de Subprodutos/ Deliverables	 Ineficiência na Gestão do Projeto Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Não Adoção ou Tardia Implementação de Ações Corretivas Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Falhas no Produto
Fomento à Participação da Equipe na Alocação dos Recursos	 Equivocado Dimensionamento de Recursos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Descumprimento das Condições do Projeto Desenvolvimento de Produto Falho ou Não Atendente dos Requisitos Estabelecidos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Baixa Integração entre os Indivíduos

TÉCNICAS DE EVITAÇÃO E MINIMIZAÇÃO DOS RISCOS	
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
	Componentes da Equipe • Desmotivação dos Desenvolvedores
Fomento à Participação da Equipe na Alocação dos Recursos	 Equivocado Dimensionamento de Recursos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Descumprimento das Condições do Projeto Desenvolvimento de Produto Falho ou Não Atendente dos Requisitos Estabelecidos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Baixa Integração entre os Indivíduos Componentes da Equipe Desmotivação dos Desenvolvedores
Formação e Contínua Atualizada Manutenção de Bancos de Documentação de Experiências de Desenvolvimento para Posterior Reuso	 Não Aproveitamento de Experiências Pretéritas na Gestão do Projeto Não Reuso de Software e Conseqüente "Reinvenção da Roda" Desperdício de Recursos na Busca por Soluções Já Identificadas ou no Emprego de Medidas Comprovadamente Ineficientes
Formalização e Difusão de Anti- Padrões em Gerenciamento de Projetos	Inexperiência e Inaptidões de Gerentes de Projeto e Seus Nocivos Efeitos no Processo de Desenvolvimento e no Produto Final
Fortalecimento dos Mecanismos Informais de Transmissão de Conhecimentos e de Comunicação entre Desenvolvedores	 Equivocada Transmissão de Informações Necessárias ao Desenvolvimento ou à Gestão do Projeto Falhas no Produto

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
	 Enganosa Delimitação de Recursos e Prazos de Desenvolvimento Desnecessário Dispêndio de Esforços no Desenvolvimento de Funcionalidades Já Existentes ("Reinvenção da Roda")
Fracionamento/ Subdivisão de Grandes Projetos em Mini/ Subprojetos de Menor Complexidade	 Complexidade de Sistemas Grandes Descumprimento das Condições do Projeto Desenvolvimento de Produto Falho ou Não Atendente dos Requisitos Estabelecidos Equivocado Dimensionamento de Recursos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Produto Falho
Framework de Suportes ao Desenvolvimento	 Perda de Prazos Dispêndio Ineficiente ou Inútil de Recursos Exaustão de Recursos Retrabalho Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Desenvolvimento de Produto Falho

TÉCNICAS DE EVITAÇÃO	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
Implantação e Contínua Condução de Ações de Treinamento, Incentivo e Integração dos Indivíduos Componentes da Organização Desenvolvedora	 Equivocada Definição dos Requisitos do Sistema Falhas no Produto Enganosa Delimitação dos Recursos e Prazos de Desenvolvimento Equivocada Transmissão de Informações Necessárias ao Desenvolvimento ou à Gestão do Projeto Desnecessário Dispêndio de Esforços no Desenvolvimento de Funcionalidades Já Existentes ("Reinvenção da Roda") Dificuldades Operacionais de Desenvolvimento Impossibilidade de Reuso de Software Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Perda de Recursos, Desmotivação da Equipe etc.) Tardio Diagnóstico de Equívocos na Identificação de Requisitos do Sistema em Desenvolvimento Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos
Inclusão de Aspectos de Segurança e Usabilidade nos Requisitos de Produtos e no Processo de Desenvolvimento	

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
Integração Final do Sistema a Partir de Diversos e Sucessivos Processos Menores de Integração (Técnica BASIS de Integração)	 Problemas na Integração de Módulos do Sistema (Incompatibilidades, Insucesso, Equivocada Integração, Tardia Integração etc.) Dispêndio Ineficiente de Recursos na Integração Falha no Produto Complexidade da Integração Final Requerida Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.)
Investimento no Planejamento Prévio do Desenvolvimento	 Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Desenvolvimento de Produto Falho
Limitação da Formalidade e Fomento à Adaptatividade	 Burocratização e Estagnação do Processo de Desenvolvimento de Software Lentidão nos Processos de Produção de Software Inexistência de Espaço para Inovação Desmotivação da Equipe Produto Falho Ineficiente Emprego de Recursos Descumprimento de Condições do Projeto Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.)

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
Manutenção de Atualizada Documentação sobre Componentes Utilizáveis	 Aquisição de Componente Terceirizado Inútil/ Inadequado/ Incompatível Uso de Componente Defeituoso/ Falho aos Propósitos de Desenvolvimento ou do Produto Falha no Produto Problemas na Utilização dos Componentes Adquiridos (Incompatibilidade, Insucesso/ Equívoco na Integração, Dispêndio Ineficiente de Recursos para Seu Emprego etc.) Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.) Retrabalho, i.e., "Reinvenção da Roda"
Mecanismos de Testagem do Tipo Caixa-Preta	 Não Identificação Precoce de Falhas no Produto Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.) Ulterior Ineficiente Dispêndio de Recursos para Adoção de Medidas Corretivas Susceptibilidade da Testagem a Influências dos Responsáveis por sua Condução
Mecanismos de Verificação da Integração do Sistema	 Não Identificação de Falhas na Integração Não Adoção, em Tempo, de Medidas Apropriadas para Garantir o Regular Prosseguimento do Desenvolvimento e a Obtenção de Produto de Qualidade Perda de Prazos Dispêndio Ineficiente ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.)

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
	Falhas no Produto
Melhoria, Fortalecimento e Proteção da Infra-Estrutura de Desenvolvimento	 Burocratização e Estagnação do Processo de Desenvolvimento de Software Lentidão nos Processos de Produção de Software Inexistência de Espaço para Inovação Desmotivação da Equipe Perdas de Dados, Subprodutos e Produtos por Invasões e Acessos Indevidos Perda de Prazos Dispêndio Ineficiente ou Inútil de Recursos Exaustão de Recursos Descumprimento de Condições dos Projetos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos Redução do Portfólio de Clientes Potenciais
Metodologias Adaptativas de Desenvolvimento de Software (Adaptative Software Development – ASD)	 Burocratização e Estagnação do Processo de Desenvolvimento de Software Lentidão nos Processos de Produção de Software Inexistência de Espaço para Inovação Desmotivação da Equipe Produto Falho Ineficiente Emprego de Recursos Descumprimento de Condições do Projeto Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.)

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
Metodologias Ágeis de Desenvolvimento	 Burocratização e Estagnação do Processo de Desenvolvimento de Software Lentidão nos Processos de Produção de Software Inexistência de Espaço para Inovação Desmotivação da Equipe Produto Falho Ineficiente Emprego de Recursos Descumprimento de Condições do Projeto Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.)
Minimização do Número de Parceiros/ Colaboradores de Desenvolvimento	 Ineficiência na Comunicação Aumento da Complexidade da Gestão da Equipe Inadequada Gerência do Projeto Excessivo Dispêndio de Recursos Descumprimento das Condições do Projeto Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Falhas no Produto
Modelo Matemático de Otimização/ Realocação de Recursos Baseado na Avaliação de Riscos	 Equivocado Dimensionamento de Recursos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
	da Equipe etc.)
Modelos de Avaliação de Segurança do Produto	 Não Identificação de Falhas na Segurança Não Adoção, em Tempo, de Medidas Apropriadas para Garantir a Obtenção de Produto de Qualidade Perda de Prazos Dispêndio Ineficiente ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Falhas no Produto
Modelos de Desenvolvimento com Objetivos Orientados aos Riscos (Goal-Risk Model)	 Não Identificação/ Tratamento de Risco Relevante Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Falhas no Produto
Modelos de Estimativa e Análise de Riscos	 Não Identificação de Risco Relevante Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficiente ou Inútil de Recursos Exaustão de Recursos

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
	 Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Falhas no Produto
 Modelos de Gerenciamento de Riscos: Ferramenta Automática de Identificação de Riscos e de Manutenção de Seus Dados em Repositórios (ARMOR) Sistemática Abordagem de Riscos Fundada em Formalismo Gráfico (RiskIt) Modelo CMMI de Otimização de Controle de Risco Ferramenta de Gerenciamento de Riscos Focada na Documentação e no Estabelecimento de "Ranks" de Riscos (SoftRisk) Modelo de Avaliação de Riscos de Software (SRE – Software Risk Evaluation) 	 Não Identificação de Risco Relevante Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficiente ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Falhas no Produto Ineficiência na Gestão do Risco
Modelos de Referência, Baseados na Integração de Softwares, para Desenvolvimento	 Dificuldades Operacionais de Desenvolvimento Impossibilidade de Reuso de Software Descumprimento das Condições do Projeto Desenvolvimento de Produto Falho ou Não Atendente dos Requisitos Estabelecidos Equivocado Dimensionamento de Recursos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software,

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
	Desperdício de Recursos, Desmotivação da Equipe etc.)
Modificação do Escopo do Produto/ Projeto (Diminuição de Complexidade, Supressão de Funcionalidades Críticas Acessórias etc.)	 Dispêndio Ineficiente de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.)
Modularização do Sistema em Desenvolvimento	 Aparente Complexidade do Sistema Dificuldades Operacionais de Desenvolvimento Impossibilidade de Reuso de Software
Não Comunicação/ Divulgação Externa dos Riscos Potencialmente Impactantes no Produto, no Projeto ou na Organização Desenvolvedora	 Visualização Externa das Vulnerabilidades do Produto, do Projeto ou do Ente Desenvolvedor de Software Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desmotivação da Equipe etc.)
Padrões de Arquiteturas de Riscos (Subunidades Abstratas de Riscos)	 Inadequada Detecção, Análise e Tratamento dos Riscos e Seus Nocivos Efeitos no Processo de Desenvolvimento e no Produto Final
Padronização de Procedimentos de Desenvolvimento	 Dificuldades Operacionais de Desenvolvimento Impossibilidade de Reuso de Software Ineficiente Uso de Recursos (Gasto Desnecessário/ Ineficaz, "Reinvenção da Roda" etc.)

TÉCNICAS DE EVITAÇÃO	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
Paradigma de Trabalho Coletivo para Gerenciamento de Riscos Baseado na Análise de Padrões e no Reuso de Conhecimento	 Não Identificação de Risco Relevante Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Inadequado Tratamento dos Riscos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Falhas no Produto
Planning Poker para Combinação de Estimativas de Especialistas em Projetos de Software	 Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Descumprimento das Condições do Projeto Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Desenvolvimento de Produto Falho
Planos de Gestão de Qualidade do Produto	 Falhas no Produto Retrabalho Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Descumprimento das Condições do Projeto Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software,

TÉCNICAS DE EVITAÇÃ	O E MINIMIZAÇÃO DOS RISCOS
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS
	Desperdício de Recursos, Desmotivação da Equipe etc.)
Prévia Análise de Compatibilidade dos Componentes Terceirizados de Software a Serem Adquiridos	 Aquisição de Componente Terceirizado Inútil/ Inadequado/ Incompatível Uso de Componente Defeituoso/ Falho aos Propósitos de Desenvolvimento ou do Produto Falha no Produto Problemas na Utilização dos Componentes Adquiridos (Incompatibilidade, Insucesso/ Equívoco na Integração, Dispêndio Ineficiente de Recursos para Seu Emprego etc.) Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.)
Prévia Otimização dos Planos de Projetos Sujeitos a Riscos Altos e Relevantes	 Alto Impacto de Riscos Graves Equivocado Dimensionamento de Recursos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Descumprimento das Condições do Projeto Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Falhas no Produto
Prototipação	 Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da

TÉCNICAS DE EVITAÇÃO E MINIMIZAÇÃO DOS RISCOS		
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS	
Reanálise do Projeto e das	Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Desenvolvimento de Produto Falho Mudança de Tecnologia ao Longo do	
Implicações da Adoção de Nova Tecnologia no Seu Desenvolvimento		
Recursos Adicionais para Adequada Identificação de Riscos (FAST – Facilitated Application Specification e JAD – Joint Application Development)	 Não Identificação de Risco Relevante Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Falhas no Produto 	
Redes Neurais Artificiais, Redes Bayesianas e Extensões Matemáticas em Predições/ Estimativas	 Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficiente ou Inútil de Recursos Exaustão de Recursos Descumprimento das Condições do Projeto Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Desenvolvimento de Produto Falho 	

TÉCNICAS DE EVITAÇÃO E MINIMIZAÇÃO DOS RISCOS			
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS		
Reestruturação da Organização	 Estagnação da Entidade Desenvolvedora de Software Burocratização Desmotivação da Equipe Ineficiência Global Repúdio a Inovações Diminuição do Portfólio de Potenciais Clientes Prejuízos Diversos à Organização Produtora de Software (Danos Patrimoniais e à Imagem, e.g.) 		
Replicação de Dados do Produto e do Projeto	 Acidental ou Intencional Perda de Dados do Produto e/ ou do Projeto Nocivas Conseqüências, no Projeto e no Produto em Desenvolvimento, da Perda de Dados 		
Replicado Desenvolvimento em Paralelo de Funcionalidade/ Módulo/ Sistema, com o Emprego de Distintas Tecnologias de Desenvolvimento	 Perda de Prazo Fracasso no Desenvolvimento Produto Falho Diminuição do Portfólio de Potenciais Clientes Prejuízos Diversos à Organização Produtora de Software (Danos Patrimoniais e à Imagem, e.g.) 		
Reuso Consciente e Eficiente de Soluções	 Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Dispêndio Ineficiente ou Inútil de Recursos Exaustão de Recursos Retrabalho Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Desenvolvimento de Produto Falho 		

TÉCNICAS DE EVITAÇÃO E MINIMIZAÇÃO DOS RISCOS		
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS	
Scripts de Validação para Progressiva Verificação e Validação do Sistema	 Não Identificação de Falhas com Efeitos Propagáveis ao Longo do Desenvolvimento Não Adoção, em Tempo, de Medidas Apropriadas para Garantir o Regular Prosseguimento do Desenvolvimento e a Obtenção de Produto de Qualidade Perda de Prazos Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Enter Desenvolvedor (Danos à Imagem da Organização Produtora de Software Desperdício de Recursos, Desmotivação da Equipe etc.) Falhas no Produto 	
Sistema de Informação de Gerenciamento de Riscos de Projeto Baseado em Agenda de Progresso	 Inadequado Tratamento de Riscos Equivocado Dimensionamento e Alocação de Recursos Perda de Prazos Descumprimento das Condições do Projeto Dispêndio Ineficiente ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Falhas no Produto 	
Testagem do Tipo Caixa-Preta	 Não Identificação Precoce de Falhas no Produto Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.) Ulterior Ineficiente Dispêndio de Recursos para Adoção de Medidas 	

TÉCNICAS DE EVITAÇÃO E MINIMIZAÇÃO DOS RISCOS		
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS	
	Corretivas	
Uso de Testadores de Software Independentes	 Não Identificação Precoce de Falhas no Produto Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.) Ulterior Ineficiente Dispêndio de Recursos para Adoção de Medidas Corretivas Susceptibilidade da Testagem a Influências dos Responsáveis pelo Desenvolvimento 	
Utilização de Contratante/ Licitante Experiente na Avaliação de Proposta de Desenvolvimento e na Decisão por sua Aceitação	 Seleção de Projeto Não Passível de Adequada Elaboração por Questões Estruturais do Ente Desenvolvedor Seleção de Projeto de Desenvolvimento Não Interessante (Potencialmente Não Rentável) Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Fracasso no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Perda de Recursos, Desmotivação da Equipe etc.) 	

Quadro 08 – Técnicas de Evitação e Minimização dos Riscos⁵⁰.

Técnicas de Mitigação

Nesta categoria, identificaram-se as técnicas constantes do quadro 09:

⁵⁰ Quadro produzido com os dados coletados na revisão sistemática realizada.

TÉCNICAS DE MITIGAÇÃO DE RISCOS		
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS	
Abortamento do Desenvolvimento/ Projeto	 Dispêndio Ineficaz ou Inútil de Recursos Exaustão de Recursos Fracasso (Financeiro ou Não) no Desenvolvimento do Sistema Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) 	
Testagem do Tipo Caixa- Preta	 Não Identificação de Falhas no Produto Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.) Susceptibilidade da Testagem a Influências dos Responsáveis por sua Condução 	
Uso de Testadores de Software Independentes	 Não Identificação de Falhas no Produto Danos à Entidade Desenvolvedora (Patrimoniais ou à Imagem, v.g.) 	
Implantação e Atualizada Manutenção de Repositórios Eletrônicos de Dados (<i>Data Warehouse</i>) com Riscos e Correspondentes Planos de Mitigação	 Desconhecimento, pelos Responsáveis pelo Disparo de Ações Corretivas, das Medidas a Serem Adotadas para Enfrentamento dos Riscos Concretizados Inércia ou Ineficiência na Adoção de Medidas Diante da Concretização de um Evento Anteriormente Qualificado como Incerto 	
Definição e Emprego de Recursos de "Margens de Segurança" (Replicações ou Reservas Potenciais)	 Perda de Prazos Exaustão de Recursos Impossibilidade de Conclusão do Projeto Fracasso no Desenvolvimento do Sistema Falhas no Produto Prejuízos Diversos ao Ente Desenvolvedor (Danos à Imagem da Organização Produtora de Software, Desperdício de Recursos, Desmotivação da Equipe etc.) Esgotamento da Equipe de Desenvolvimento 	

TÉCNICAS DE MITIGAÇÃO DE RISCOS			
TÉCNICAS IDENTIFICADAS	RISCOS-ALVOS		
Não Comunicação/ Divulgação Externa de Vulnerabilidades/ Falhas Identificadas nos Produtos	Produto, do Projeto ou do Ente Desenvolvedor		

Quadro 09 – Técnicas de Mitigação de Riscos⁵¹.

• Técnicas de Contingenciamento

Para o contingenciamento dos riscos, identificou-se apenas uma estratégia principal nas publicações consultadas: o estabelecimento de "Planos" ou "Listas de Contingenciamento", i.e., relações de enumerações priorizadas de riscos e ações a serem implementadas, caso concretizadas estas gravíssimas e pouco prováveis incertezas.

2.2.5.3. Avaliação da Revisão

Concluída a revisão após o decurso de apróximadamente quatro meses, condensam-se os seus resultados na seção 2.2.5.3.1 (Síntese Geral) e se expõem, na seção 2.2.5.3.2 comentários breves sobre sua exatidão e robustez.

2.2.5.3.1. Síntese Geral

Como observado na seção de resultados objetivos da investigação (seção 2.2.5.1), constatou-se, ao longo das categorias ou grupos de categorias de técnicas,

⁵¹ Quadro construído a partir da leitura das fontes-primárias pré-selecionadas.

a existência de uma desigual distribuição dos métodos identificados, como se depreende da análise da tabela 07 e dos gráficos 06 e 07:

Tabela 07 – Distribuição das Técnicas Identificadas por Categorias ou Grupos

DISTRIBUIÇÃO DAS TÉCNICAS IDENTIFICADAS POR **CATEGORIAS OU GRUPOS**

CATEGORIA/ GRUPO I CATEGORIA DE TÉCNICA	E № DE TÉCNI IDENTIFICADAS	CAS	
Aceitação	01		
Transferência	03		
Evitação e Minimização	81		
Mitigação	06		
Contingenciamento	01		
Total	92		

Fonte: Análise dos Dados da Revisão Sistemática Conduzida⁵².

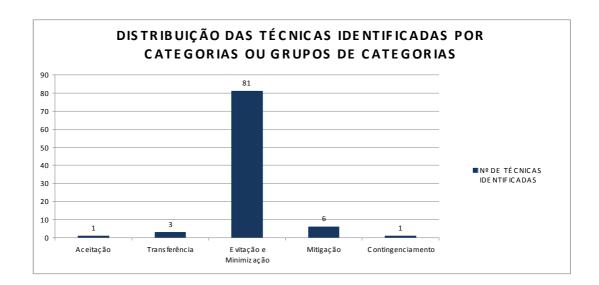


Gráfico 06 - Distribuição das Técnicas Identificadas por Categorias ou Grupos de Categorias⁵³.

⁵² Tabela obtida mediante análise das fontes-primárias integralmente analisadas.⁵³ Gráfico elaborado com base nos dados da tabela 07.

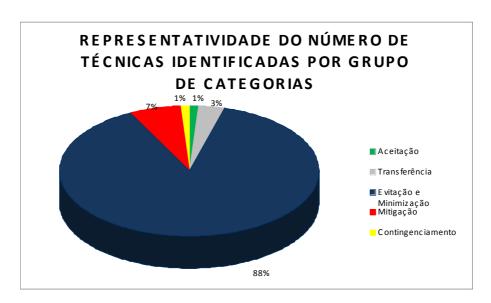


Gráfico 07 – Representatividade do Número de Técnicas Identificadas por Grupo de Categorias⁵⁴.

Do exame do gráfico 07 e da presunção de que, em publicações científicas, há uma proporcionalidade/ equivalência entre as técnicas mais referidas e as de fato utilizadas no tratamento dos riscos em projetos de *software*, conclui-se que a evitação e a minimização constituem-se no foco da gestão do risco, inferindo-se, também, que a mitigação é a alternativa seguinte a ser considerada.

Verifica-se, adicionalmente, que tais conclusões são compatíveis com a lógica comum, pois, usualmente, mostra-se, diante de uma incerteza potencialmente ameaçadora, mais eficiente, econômica e operacionalmente, a adoção de medidas para a evitação e a minimização do risco, dada a natural possibilidade de impactação de uma consumada incerteza ao longo de todo o processo produtivo.

Analisando-se os dados coletados, observa-se, ademais, que, nas categorias com mais de um método identificado, algumas técnicas são referidas com maior freqüência, como evidenciam as tabelas 08, 09 e 10 e os gráficos 06, 07 e 08⁵⁵:

⁵⁴ Representação produzida a partir das informações constantes da tabela 07.

Omitiram-se nas considerações seguintes quaisquer referências às técnicas de aceitação e contingenciamento, já que, em cada uma delas, apenas um método foi identificado.

Tabela 08 – Freqüência de Observação de Técnicas de Evitação e Minimização Identificadas

TÉCNICAS IDENTIFICADAS		FREQUÊNCIA DE	
NÚMERO DE IDENTIFICAÇÃO	TÉCNICA	OBSERVAÇÃO	
01	Ajuste da Oferta/ Proposta de Contratação com a Fixação de Restrições no Escopo do Desenvolvimento	01	
02	Algoritmos Genéticos na Busca de Melhores Soluções para a Integração de Módulos do Sistema	01	
03	Algoritmos Genéticos na Seleção das Melhores Soluções de Agendamento do Projeto	01	
04	Auditorias Independentes em Marcos do Projeto para Análise do Mesmo e Definição de Ações e Planos para Enfrentamento de Riscos	01	
05	Conscientização dos Contratantes e Usuários a Respeito dos Impactos dos Requisitos e Funcionalidades Desejados na Segurança e Confiabilidade do Sistema	01	
06	Contínua Atualização Mercadológica	01	
07	Contínua Avaliação Qualitativa dos Fornecedores de Componentes	01	
08	Contínua Capacitação e Atualização em Gestão de Projetos	01	
09	Convencimento da Parte Interessada, em Benefício da Segurança e Confiabilidade, Sobre a Importância de Eventual Subdimensionamento de Objetivos e Expectativas	01	

TÉCNICAS IDENTIFICADAS		FREQUÊNCIA DE
NÚMERO DE IDENTIFICAÇÃO	TÉCNICA	OBSERVAÇÃO
10	Criteriosa e Adequada Seleção e Utilização de Componentes Terceirizados de <i>Software</i> a Serem Incluídos no Sistema em Desenvolvimento	01
11	Criteriosa Seleção e Emprego de Adequado Modelo para a Definição dos Requisitos do Sistema em Desenvolvimento	02
12	Criticidade e Reserva Quanto ao Futuro da Organização, às Perspectivas do Desenvolvimento de <i>Software</i> no Mercado e à Adoção de Novos Valores e Idéias	01
13	Definição de "Margens de Segurança" (Replicações ou Reservas Potenciais) para Uso e Alocação de Recursos	02
14	Definição de Cronograma de Atividades	02
15	Definição de Pontos de Checagem para Avaliação dos Resultados Parciais de Integrações de Módulos do Sistema	01
16	Definição e Emprego de Critérios de "Interesse e Viabilidade" na Seleção de Projetos a Serem Desenvolvidos (Projetos Potencialmente Exitosos e Rentáveis)	01
17	Definição e Emprego de Métricas para Guia do Gerenciamento de Qualidade do Projeto	04
18	Definição e Emprego de Modelo de Interligação entre Mecanismos de Coordenação e Práticas de Identificação de Diferenças de Percepção nos	01

<u> </u>			
TÉCNICAS IDENTIFICADAS		FREQUÊNCIA DE	
NÚMERO DE IDENTIFICAÇÃO	TÉCNICA	OBSERVAÇÃO	
	Requisitos do Sistema		
19	Definição e Emprego de Paradigmas de Agendamento do Desenvolvimento	01	
20	Elaboração e Uniforme Emprego de Linguagem para o Gerenciamento de Riscos em Sistemas de Informação	01	
21	Emprego Congruente de Clones de Código	01	
22	Esforços Adicionais na Análise dos Requisitos do Sistema e no Planejamento e na Condução do seu Desenvolvimento	01	
23	Estabelecimento de Comunicação Efetiva, Amigável e Confiável com a Parte Interessada no Sistema (Solicitantes e Usuários), i.e., Definição de "Comunicação Direta"/ "Coordenação Horizontal"	05	
24	Estabelecimento e Emprego de Modelos de Documentação do Projeto e Paradigmas de Integração destes Documentos	01	
25	Estabelecimento e Emprego de Modelos de Documentação do Projeto e Paradigmas de Integração destes Documentos	01	
26	Estabelecimento e Emprego de Políticas de Segurança para Proteção da Organização Produtora de Software	01	
27	Estabelecimento, em Projetos Complexos ou Grandes, de Subgrupos de Desenvolvimento Coordenados Cada um por um Representante Seu	01	

TÉCNICAS IDENTIFICADAS		FREQUÊNCIA DE
NÚMERO DE IDENTIFICAÇÃO	TÉCNICA	OBSERVAÇÃO
28	Estratégias de Motivação da Equipe de Desenvolvimento na Aceitação de Novas Tecnologias e/ ou na Evitação do seu Imediato Repúdio	01
29	Estratégias Suplementares para Redução de Discrepâncias na Percepção de Requisitos entre a Parte Interessada e os Desenvolvedores do Sistema (Inquirição de Usuários, Derivação de Requisitos a Partir de Sistemas Pré-Existentes, Síntese de Requisitos Mediante Observação e Análise das Atividades do Usuário etc.)	01
30	Evitação da Excessiva Identificação de Riscos com Vistas ao Afastamento de Irracional Otimismo Injustificado na Condução do Projeto (Definição de Prazos e Métricas, e.g.)	01
31	Exclusivos Aquisição e Emprego de Componentes Certificados de Software Terceirizado	01
32	Ferramentas/ Matrizes de Estimativa de Escopo	01
33	Fixação de Marcos para Entrega, ao Longo do Processo de Desenvolvimento, de Subprodutos/ <i>Deliverables</i>	01
34	Fomento à Participação da Equipe na Alocação dos Recursos	01
35	Fomento à Participação da Equipe na Alocação dos Recursos	01
36	Formação e Contínua Atualizada Manutenção de Bancos de Documentação de Experiências de	03

TÉCNICAS IDENTIFICADAS		EDEOUÊNOIA DE
NÚMERO DE IDENTIFICAÇÃO	TÉCNICA	FREQUÊNCIA DE OBSERVAÇÃO
	Desenvolvimento para Posterior Reuso	
37	Formalização e Difusão de Anti-Padrões em Gerenciamento de Projetos	01
38	Fortalecimento dos Mecanismos Informais de Transmissão de Conhecimentos e de Comunicação entre Desenvolvedores	01
39	Fracionamento/ Subdivisão de Grandes Projetos em Mini/ Subprojetos de Menor Complexidade	03
40	Framework de Suportes ao Desenvolvimento	01
41	Implantação e Contínua Condução de Ações de Treinamento, Incentivo e Integração dos Indivíduos Componentes da Organização Desenvolvedora	06
42	Inclusão de Aspectos de Segurança e Usabilidade nos Requisitos de Produtos e no Processo de Desenvolvimento	01
43	Integração Final do Sistema a Partir de Diversos e Sucessivos Processos Menores de Integração (Técnica <i>BASIS</i> de Integração)	01
44	Investimento no Planejamento Prévio do Desenvolvimento	02
45	Limitação da Formalidade e Fomento à Adaptatividade	01
46	Manutenção de Atualizada Documentação sobre Componentes Utilizáveis	01
47	Mecanismos de Testagem do Tipo	01

TÉCNICAS IDENTIFICADAS		FREQUÊNCIA DE
NÚMERO DE IDENTIFICAÇÃO	TÉCNICA	OBSERVAÇÃO
	Caixa-Preta	
48	Mecanismos de Verificação da Integração do Sistema	01
49	Melhoria, Fortalecimento e Proteção da Infra-Estrutura de Desenvolvimento	01
50	Metodologias Adaptativas de Desenvolvimento de <i>Software</i> (<i>Adaptative Software Development –</i> <i>ASD</i>)	01
51	Metodologias Ágeis de Desenvolvimento	02
52	Minimização do Número de Parceiros/ Colaboradores de Desenvolvimento	01
53	Modelo Matemático de Otimização/ Realocação de Recursos Baseado na Avaliação de Riscos	01
54	Modelos de Avaliação de Segurança do Produto	01
55	Modelos de Desenvolvimento com Objetivos Orientados aos Riscos (<i>Goal-Risk Model</i>)	01
56	Modelos de Estimativa e Análise de Riscos	01
57	Modelos de Gerenciamento de Riscos:	01
	 Ferramenta Automática de Identificação de Riscos e de Manutenção de Seus Dados em Repositórios (ARMOR) Sistemática Abordagem de Riscos Fundada em Formalismo Gráfico (RiskIt) Modelo CMMI de Otimização de Controle de Risco 	

	3	
TÉCNICAS IDENTIFICADAS		FREQUÊNCIA DE
NÚMERO DE IDENTIFICAÇÃO	TÉCNICA	OBSERVAÇÃO
	 Ferramenta de Gerenciamento de Riscos Focada na Documentação e no Estabelecimento de "Ranks" de Riscos (SoftRisk) Modelo de Avaliação de Riscos de Software (SRE – Software Risk Evaluation) 	
58	Modelos de Referência, Baseados na Integração de <i>Softwares</i> , para Desenvolvimento	01
59	Modificação do Escopo do Produto/ Projeto (Diminuição de Complexidade, Supressão de Funcionalidades Críticas Acessórias etc.)	04
60	Modularização do Sistema em Desenvolvimento	01
61	Não Comunicação/ Divulgação Externa dos Riscos Potencialmente Impactantes no Produto, no Projeto ou na Organização Desenvolvedora	01
62	Padrões de Arquiteturas de Riscos (Subunidades Abstratas de Riscos)	01
63	Padronização de Procedimentos de Desenvolvimento	01
64	Paradigma de Trabalho Coletivo para Gerenciamento de Riscos Baseado na Análise de Padrões e no Reuso de Conhecimento	01
65	Planning Poker para Combinação de Estimativas de Especialistas em Projetos de Software	01
66	Planos de Gestão de Qualidade do Produto	01

TÉCNICAS IDENTIFICADAS		FREQUÊNCIA DE
NÚMERO DE IDENTIFICAÇÃO	TÉCNICA	OBSERVAÇÃO
67	Prévia Análise de Compatibilidade dos Componentes Terceirizados de <i>Software</i> a Serem Adquiridos	02
68	Prévia Otimização dos Planos de Projetos Sujeitos a Riscos Altos e Relevantes	01
69	Prototipação	05
70	Reanálise do Projeto e das Implicações da Adoção de Nova Tecnologia no Seu Desenvolvimento	01
71	Recursos Adicionais para Adequada Identificação de Riscos (FAST – Facilitated Application Specification e JAD – Joint Application Development)	01
72	Redes Neurais Artificiais, Redes Bayesianas e Extensões Matemáticas em Predições/ Estimativas	01
73	Reestruturação da Organização	01
74	Replicação de Dados do Produto e do Projeto	01
75	Replicado Desenvolvimento em Paralelo de Funcionalidade/ Módulo/ Sistema, com o Emprego de Distintas Tecnologias de Desenvolvimento	01
76	Reuso Consciente e Eficiente de Soluções	02
77	Scripts de Validação para Progressiva Verificação e Validação do Sistema	01
78	Sistema de Informação de Gerenciamento de Riscos de Projeto Baseado em Agenda de Progresso	01

TÉCNICAS IDENTIFICADAS		FREQUÊNCIA DE
NÚMERO DE IDENTIFICAÇÃO	TÉCNICA	OBSERVAÇÃO
79	Testagem do Tipo Caixa-Preta	01
80	Uso de Testadores de <i>Software</i> Independentes	01
81	Utilização de Contratante/ Licitante Experiente na Avaliação de Proposta de Desenvolvimento e na Decisão por sua Aceitação	01
TOTAL		111

Fonte: Avaliação dos Dados Extraídos na Revisão Sistemática⁵⁶.

Tabela 09 - Freqüência de Observação de Técnicas de Mitigação Identificadas

FREQUÊNCIA DE OBSERVAÇÃO DE TÉCNICAS DE MITIGAÇÃO IDENTIFICADAS

TÉCNICAS IDENTIFICADAS		FREQUÊNCIA DE
NÚMERO DE IDENTIFICAÇÃO	TÉCNICA	OBSERVAÇÃO
01	Abortamento do Desenvolvimento/ Projeto	01
02	Testagem do Tipo Caixa-Preta	01
03	Uso de Testadores de <i>Software</i> Independentes	01
04	Implantação e Atualizada Manutenção de Repositórios Eletrônicos de Dados (<i>Data Warehouse</i>) com Riscos e Correspondentes Planos de Mitigação	01

⁵⁶ Tabela construída com o exame das observações feitas durante a condução da revisão.

FREQUÊNCIA DE OBSERVAÇÃO DE TÉCNICAS DE MITIGAÇÃO **IDENTIFICADAS**

TÉCNICAS IDENTIFICADAS		FREQUÊNCIA DE
NÚMERO DE IDENTIFICAÇÃO	TÉCNICA	OBSERVAÇÃO
05	Definição e Emprego de Recursos de "Margens de Segurança" (Replicações ou Reservas Potenciais)	02
06	Não Comunicação/ Divulgação Externa de Vulnerabilidades/ Falhas Identificadas nos Produtos	01
TOTAL		07

Fonte: Análise dos Dados Obtidos com a Revisão Sistemática Operada⁵⁷.

Tabela 10 – Frequência de Observação de Técnicas de Transferência Identificadas

FREQUÊNCIA DE OBSERVAÇÃO DE TÉCNICAS DE TRANSFERÊNCIA **IDENTIFICADAS**

TÉCNICAS IDENTIFICADAS		FREQUÊNCIA
NÚMERO DE IDENTIFICAÇÃO	TÉCNICA	DE OBSERVAÇÃO
01	Criteriosa e Adequada Seleção e Utilização de Componentes Terceirizados de <i>Software</i> a Serem Incluídos no Sistema em Desenvolvimento	01
02	Exclusivos Aquisição e Emprego de Componentes Certificados de Software Terceirizado	01
03	Contratação de Seguro/ Garantia para o Projeto/ Desenvolvimento do Sistema	01
TOTAL		03

Fonte: Avaliação dos Dados Extraídos na Revisão Sistemática Realizada⁵⁸.

101

⁵⁷ Tabela elaborada a partir das notas realizadas ao longo do processo de extração de dados das fontes pré-selecionadas.

58 Tabela produzida com a análise dos dados extraídos na revisão conduzida.

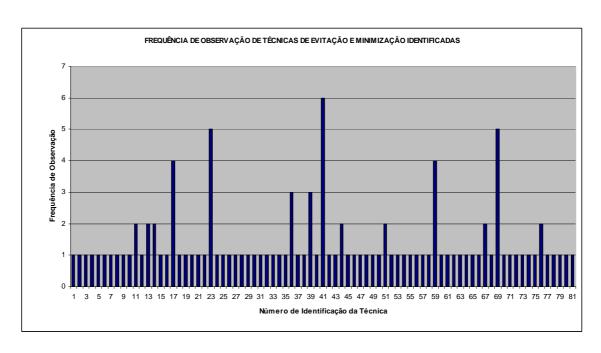


Gráfico 08 — Freqüência de Observação de Técnicas de Evitação e Minimização Identificadas 59 .

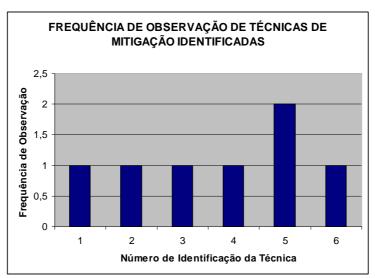


Gráfico 09 - Freqüência de Observação de Técnicas de Mitigação Identificadas⁶⁰.

⁵⁹ Gráfico elaborado com o uso dos dados constantes da tabela 08.
 ⁶⁰ Gráfico estruturado a partir das informações constantes na tabela 09.

102

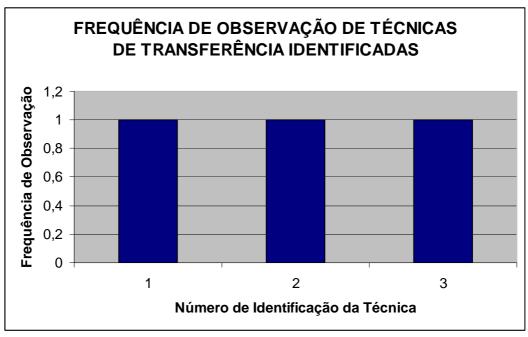


Gráfico 10 – Freqüência de Observação de Técnicas de Transferência Identificadas⁶¹.

Examinando-se as tabelas 08, 09 e 10, bem como os gráficos 08, 09 e 10, constata-se, considerando-se, também, que somente uma técnica foi identificada para aceitação e para o contingenciamento, que:

- Múltiplas e distintas são as alternativas para o tratamento dos riscos em projetos de software;
- Há, ao que indicam os resultados da revisão operada, preferência pelo emprego de técnicas de evitação e minimização de riscos;
- Não existe uniformidade na freqüência de observação de técnicas, tendo sido constatada, em uma mesma categoria ou grupo de técnica, múltipla referência a determinados métodos para o tratamento dos riscos;
- Com o propósito de se evitar e/ ou minimizar riscos, acredita-se que cinco técnicas principais podem ser utilizadas:
 - Implantação e Contínua Condução de Ações de Treinamento, Incentivo e Integração dos Indivíduos Componentes da Organização Desenvolvedora;

_

⁶¹ Gráfico construído com base nos dados existentes na tabela 10.

- Estabelecimento de Comunicação Efetiva, Amigável e Confiável com a Parte Interessada no Sistema (Solicitantes e Usuários), i.e., Definição de "Comunicação Direta"/ "Coordenação Horizontal";
- Prototipação;
- Definição e Emprego de Métricas para Guia do Gerenciamento de Qualidade do Projeto;
- Modificação do Escopo do Produto/ Projeto (Diminuição de Complexidade, Supressão de Funcionalidades Críticas Acessórias etc.).
- Como forma de se mitigar riscos, seis técnicas são usualmente referidas, entre elas se destacando, por sua frequência, a definição e o emprego de recursos referenciados como "margens de segurança", ou seja, replicações ou reservas potenciais de elementos ou recursos do projeto;
- A transferência do risco não se constitui em procedimento comum, tendo sido identificadas apenas três técnicas para este propósito.

2.2.5.3.2. Exatidão e Robustez

Delimitada com detalhes a revisão rigorosamente operada (objeto, objetivos, critérios de pré-seleção e critérios de aproveitamento) e não diminuto o número de fontes-primárias utilizadas, os resultados obtidos são robustos, sujeitando-se a investigação conduzida apenas a influências oriundas da experiência e percepção pessoais do condutor da revisão.

2.2.5.4. Inferências e Considerações Finais

Como se infere do exame das seções anteriores, foram estabelecidos critérios objetivos para a pré-seleção das fontes-primárias, almejando-se, inicialmente, a condução de revisão em 500 (quinhentos) documentos científicos que atendessem aos requisitos definidos.

Procedeu-se, com base nos critérios mencionados, à pré-seleção das 500 (quinhentas) fontes referidas, não sendo possível, porém, o seu exame, eis que, por inexperiência prévia do responsável pelo seu planejamento e condução, a revisão pretendida foi superdimensionada, considerados os prazos para cumprimento das

atividades, a amplitude da pretensão (análise de quinhentas produções científicas) e o restrito número de revisores (apenas um).

Ainda que não tenha sido possível a análise completa das fontes préselecionadas, há que se reconhecer ter sido o objetivo do estudo atingido, pois fração razoável da meta inicialmente estipulada foi atingida: aleatória análise de 363 (trezentas e sessenta e três) fontes-primárias.

No universo pesquisado, 93 (noventa e três) produções científicas foram qualificadas positivamente, tendo sido nas mesmas identificadas 92 (noventa e duas) distintas técnicas/ métodos de tratamento de riscos.

Apesar de a revisão ter sido conduzida por apenas um indivíduo, sujeitandose, portanto, sem quaisquer restrições, às percepções e experiências pretéritas deste, é possível o estabelecimento de algumas inferências sobre gestores/ desenvolvedores de projetos de sistemas e seus procedimentos de trabalho, destacando-se:

- Crença na relevância do emprego de técnicas de evitação e minimização de riscos em detrimento da utilização de outras espécies de métodos de tratamento de riscos;
- Preferência pela utilização de cinco técnicas principais de tratamento de riscos:
 - Implantação e Contínua Condução de Ações de Treinamento, Incentivo e Integração dos Indivíduos Componentes da Organização Desenvolvedora;
 - Estabelecimento de Comunicação Efetiva, Amigável e Confiável com a Parte Interessada no Sistema (Solicitantes e Usuários), i.e., Definição de "Comunicação Direta"/ "Coordenação Horizontal";
 - Prototipação;
 - Definição e Emprego de Métricas para Guia do Gerenciamento de Qualidade do Projeto;
 - Modificação do Escopo do Produto/ Projeto (Diminuição de Complexidade, Supressão de Funcionalidades Críticas Acessórias etc.).

Em virtude da natural complexidade do desenvolvimento de *software* e da alta taxa de falha a esta tarefa associada, as inferências referidas e os demais resultados obtidos mostram-se úteis no gerenciamento de projetos de *software*, podendo servir como guia referencial de soluções para determinados riscos-alvos e como subsídio para inquirições futuras.

Com o propósito de se elucidar mais a respeito do tema, é recomendável que novas revisões sejam conduzidas na área, com novos conjuntos de fontes-primárias e investigadores em número preferencialmente superior a 1 (um).

3. CONCLUSÕES

Da análise dos capítulos anteriores, algumas ilações resultam, expondo-se, neste ponto, breves notas sobre as conclusões obtidas.

Infere-se por representarem os riscos, simultaneamente, ameaças ou oportunidades a projetos de qualquer natureza, que é relevante o seu estudo para a eficiente gestão de projetos.

Concebidos como incertezas potencialmente ameaçadoras ou fomentadoras de projetos, os riscos podem ser classificados de distintas formas e em função de critérios variados.

Em caráter geral, para a efetiva gestão dos riscos é imprescindível que se realizem a sua identificação, análise, tratamento e monitoramento.

Neste trabalho, objetivou-se a realização de específica investigação acerca do tratamento dos riscos em projetos de *software*, já que o desenvolvimento de tal espécie de produto é, inerentemente, atividade essencialmente sujeita a incertezas potencialmente impactantes no seu êxito, tendo sido conduzidas, para tal finalidade, inquirição na literatura especializada e revisão sistemática em publicações científicas eletronicamente disponibilizadas.

Com a análise dos dados coletados através da revisão sistemática, constatouse, ao que indicam os resultados obtidos e consideradas algumas premissas anteriormente referidas (seção 2.2.5.3.1), que:

- A evitação e a minimização constituem-se nas principais opções utilizadas no tratamento dos riscos, sendo sucedidas, em freqüência de observação, por estratégias de mitigação;
- Com a finalidade de evitação e/ ou minimização de riscos, cinco principais técnicas são empregadas:

- Implantação e Contínua Condução de Ações de Treinamento, Incentivo e
 Integração dos Indivíduos Componentes da Organização Desenvolvedora;
- Estabelecimento de Comunicação Efetiva, Amigável e Confiável com a Parte Interessada no Sistema (Solicitantes e Usuários), i.e., Definição de "Comunicação Direta"/ "Coordenação Horizontal";
- Prototipação;
- Definição e Emprego de Métricas para Guia do Gerenciamento de Qualidade do Projeto;
- Modificação do Escopo do Produto/ Projeto (Diminuição de Complexidade,
 Supressão de Funcionalidades Críticas Acessórias etc.).
- Para a mitigação de incertezas, são, com maior freqüência, definidos e utilizados recursos refereciados como "margens de segurança", i.e., replicações ou reservas potenciais de elementos necessários à exitosa conclusão do projeto;
- Não é prática usual a integral transferência dos riscos.

Observando-se o conjunto de informações extraídas do processo de revisão sistemática e o arcabouço de idéias e conceitos previamente formado para a sua condução, verifica-se, ademais, que o desconhecimento dos desenvolvedores em relação ao domínio da aplicação é, em determinados contextos, fator decisivo para o insucesso do empreendimento de desenvolvimento. Desta forma, para que se possa evitar danos ao projeto e à entidade produtora, é necessário maior interdisciplinariedade, podendo ser útil, no planejamento e desenvolvimento de projetos de software, a adoção de ações como:

- Inclusão, na equipe de desenvolvimento, de consultor especializado no domínio/ ramo de negócio em que o sistema deve operar;
- Contratação de desenvolvedores com múltiplas formações e experiências profissionais;
- Capacitação de integrantes da equipe de desenvolvimento em múltiplas áreas do conhecimento humano (noções elementares, ao menos).

Diante das inferências e conclusões produzidas, o estudo efetivado atingiu seu objetivo, devendo-se salientar, em razão do emprego de rigoroso método na condução da revisão sistemática realizada, que os resultados obtidos são robustos e se sujeitam, apenas, às naturalmente inafastáveis influências oriundas das experiências prévias e percepções pessoais do único condutor do estudo.

Registrada a susceptibilidade às influências citadas, há que se reconhecer a utilidade da investigação, observando-se, entretanto, ser recomendável a realização de novas revisões na área, com novos conjuntos de estudos originais e, preferencialmente, com número de investigadores/ revisores superior a 1 (um).

Especificamente em relação a esta recomendação de novas revisões, é válido advertir, em face das dificuldades encontradas ao longo da investigação conduzida (eventuais inoperância/ lentidão do *link* da Universidade de Pernambuco (UPE) para acesso ao Portal de Periódicos da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) e impossibilidade de acesso ao conteúdo integral das publicações de determinados repositórios científicos – SpringerLink⁶², v.g.), ser útil a viabilização de formas adicionais para pesquisa e acesso a fontes-primárias a serem utilizadas nos processos de sistemática revisão.

Ao fim, é digna de destaque, para futuros trabalhos de conclusão de curso produzidos na Escola Politécnica de Pernambuco, a importância de definição de uma diretriz mais rígida e clara quanto à formatação do documento final a ser apresentado, preferencialmente compatível, de modo integral, com as normas definidas pela Associação Brasileira de Normas Técnicas (ABNT), já que a este órgão, com exclusividade, compete a normalização técnica no Brasil, nos termos do item 2 da Resolução nº 07/92 do Conselho Nacional de Metrologia, Normalização e Qualidade Industrial (CONMETRO)⁶³.

_

Repositório eletrônico de publicações científicas acessível através do endereço http://www.springerlink.com/home/main.mpx.

⁶³ Para o exame da referida resolução, recomenda-se a consulta a CONMETRO(1992).

REFERÊNCIAS

ASNAR, Yudistira <i>et al.</i> From trust to dependability through risk analysis. In: Secon International Conference on Availability, Reliability and Security (AreS 2007), 2007 Viena. AreS 2007 . Disponível em: http://www.troposproject.org/biblio/author/files/asnar-giorgini-massacci-zannone-ARES.pdf . Acesso em: 29 abr. 2010.
ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 6023 : informação e documentação: referências: elaboração. Rio de Janeiro, ago. 2002.
NBR 6024 : informação e documentação: numeração progressiva das seções de um documento escrito: apresentação. Rio de Janeiro, mai. 2003.
NBR 6027 : informação e documentação: sumário: apresentação. Rio de Janeiro, mai. 2003.
NBR 6028 : informação e documentação: resumo: apresentação. Rio de Janeiro, nov. 2003.
NBR 6034 : informação e documentação: índice: apresentação. Rio de Janeiro, dez. 2004.
NBR 10520 : informação e documentação: citações em documentos: apresentação. Rio de Janeiro, ago. 2002.
NBR 10719 : apresentação de relatórios técnico-científicos. Rio de Janeiro ago. 1989.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 14724**: informação e documentação: trabalhos acadêmicos: apresentação. Rio de Janeiro, dez. 2005.

_____. **NBR 15287**: informação e documentação: projeto de pesquisa: apresentação. Rio de Janeiro, dez. 2005.

BIBLIOTECA DA ÁREA DE ENGENHARIA DA UNICAMP. **Apresentação das normas da ABNT NBR 6023 e NBR 10520**. Campinas: UNICAMP, 2002. Disponível em: http://www.fec.unicamp.br/~regina/ic043-referencia-bibliografica-2002.ppt. Acesso em: 13 ago. 2004.

BIOLCHINI, Jorge *et al.* **Systematic review in software engineering**. Rio de Janeiro: [COPPE/ UFRJ], 2005.

BLUE PAINTER. **Le Dictionnaire**. [Paris?]: Blue Painter, [200?]. Disponível em: http://www.le-dictionnaire.com. Acesso em: 05 mai. 2010.

BRASIL. Decreto nº 6.583, de 29 de setembro de 2008.Promulga o Acordo Ortográfico da Língua Portuguesa, assinado em Lisboa, em 16 de dezembro de 1990. **Diário Oficial [da] República Federativa do Brasil**, Brasília, DF, 30 set. 2008, p. 1. Disponível em: < http://www.planalto.gov.br/ccivil_03/_Ato2007-2010/2008/Decreto/D6583.htm >. Acesso em: 31 mai. 2010.

CALIFORNIA DEPARTMENT OF TRANSPORTATION (CALTRANS). **Project risk** management handbook. [Sacramento]: CALTRANS, 2003.

CAMPANÁRIO, Milton de; ROVAI, Ricardo Leonardo; COSTA, Tiago Ribeiro. Metodologia e Níveis de Maturidade em Gestão de Riscos de Projetos nas Empresas de Serviços de Telecomunicações. Congresso Virtual Brasileiro de Administração 04 (CONVIBRA 04). Disponível em: http://risktrak.com/news/brazil-conference43.pdf >. Acesso em 01.03.2010.

CASTRO, José D'. Avaliação de riscos em projetos de software a partir do uso de técnicas de inteligência computacional. 2009. 61 f. Trabalho de Conclusão de Curso (Graduação em Engenharia da Computação) – Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife, 2009. Disponivel em: http://tcc.dsc.upe.br/. Acesso em: 24 fev. 2010.

CENTRO UNIVERSITÁRIO DO NORTE PAULISTA. **Programa de apoio à elaboração de trabalhos acadêmicos**. São José do Rio Preto, [200?]. Disponível em: http://sysbibli.unorp.br/cgi-bin/sysbibli/sysbweb.exe/template?arquivo=referencia/programa_folha1.htm. Acesso em: 13 ago. 2004.

CENTRO UNIVERSITÁRIO FIEO. **Normas para apresentação de trabalhos acadêmicos**: ABNT/ NBR - 14724. Osasco: [s.n.], 2002.

COLLIER, Paul M. Fundamentals of risk management for accountants and managers: Tools and techniques. [Oxford]: Elsevier, 2009.

CONSELHO NACIONAL DE METROLOGIA, NORMALIZAÇÃO E QUALIDADE INDUSTRIAL. **Resolução nº 07**, de 24 agosto de 1992. [Brasília, DF?], ago. 1992. Disponível em: http://www.inmetro.gov.br/legislacao/resc/pdf/RESC000017.pdf. Acesso em: 01 jun. 2010.

CONTE, Tayana Uchôa; MENDES, Emília; TRAVASSOS< Guilherme Horta. **Revisão sistemática sobre processos de desenvolvimento para aplicações web**. Rio de Janeiro: [COPPE/ UFRJ?], 2004.

COOPER, Dale F. *et al.* **Project risk management guidelines**: managing risk in large projects and complex procurements. [West Sussex?]: John Wiley & Sons Ltd, 2005.

COOK, Deborah J.; MULROW, Cynthia D.; HAYNES, R. Brian. Systematic reviews: synthesis of best evidence for clinical decisions. **Annals of Internal Medicine**, Philadelphia, vol. 126, Mar. 1997. Disponível em: http://www.annals.org/content/126/5/376.full. Acesso em: 02 fev. 2010.

CORDEIRO *et al.* Revisão sistemática: uma revisão narrativa. **Revista do Colégio Brasileiro de Cirurgiões**, Rio de Janeiro, vol. 34, nov./ dec. 2007. Disponível em: http://www.scielo.br/pdf/rcbc/v34n6/11.pdf>. Acesso em: 02 fev. 2010

COX, Sue. TAIT, Robin. **Safety, reliability and risk management**: an integrated approach. 2nd ed. Oxford: Butterworth-Heinemann, 1998.

CRAFT, Rick *et al.* **An open framework for risk management**. [Alburquerque]: [Sandia Corporation], [200-?].

FUNDAÇÃO GETÚLIO VARGAS. Escola de Administração de Empresas de São Paulo. Biblioteca Karl A. Boedecker. **Normas para apresentação de monografia**. 2. ed. São Paulo: FGV, 2001. Disponível em: www.di.ufpe.br/~dgt/Mestrado/Metodologia/Docs/normasbib-FGV.pdf>. Acesso em: 09 jun. 2007.

GALORATH INCORPORATED. Software project failure costs billions.. better estimation & planning can help. **Galorath Incorporated**, El Segundo, [2010?]. Disponível em: http://www.galorath.com/wp/software-project-failure-costs-billions-better-estimation-planning-can-help.php. Acesso em: 05 mai. 2010.

HASS, Kathleen B. The blending of traditional and agile management. **PMWorld Today**,[s.l.], vol. IX, issue V, May 2007. Disponível em: http://www.pmforum.org/library/tips/2007/PDFs/Hass-5-07.pdf. Acesso em: 03 mai. 2010.

HATIER. **Bescherelle**: comment conjugue-t-on ce verbe? Paris: Hatier, [200-]. Disponível em: http://www.bescherelle.com>. Acesso em: 04 mai. 2010.

HIGGINS, Julian P. T.; GREEN, Sally. (Edit). **Cochrane handbook for systematic reviews of interventions**. Oxford: The Cochrane Collaboration, 2009. Disponível em: http://www.cochrane-handbook.org/. Acesso em: 01 mar. 2010.

HM TREASURE. **The orange book**: management of risk – principles and concepts. [London?]: HM Treasure, 2004.

IBGE. **Normas de apresentação tabular**. 3 ed. Rio de Janeiro: IBGE, 1993. Disponível em: http://biblioteca.ibge.gov.br/visualizacao/monografias/GEBIS%20%20RJ/normastabular.pdf>. Acesso em: 08 mai. 2010.

INSTITUTO TECNOLÓGICO DE AERONÁUTICA. **Normas para trabalho de graduação**. São José dos Campos: ITA, 2003. Disponível em: <cefetpr.br/deptos/daeln/engenharia/curriculo/projeto_final/propostas_mudanca_pf/N TG&Anexo-ITA.pdf>. Acesso em: 09 jun. 2007.

IT CORTEX. Failure rate. **IT Cortex**, Brussels, [200?]. Disponível em: http://www.it-cortex.com/Stat Failure Rate.htm>. Acesso em: 4 mai. 2010.

JEYNES, Jacqueline. **Risk management**: 10 principles. Oxford: Butterworth-Heinemann, 2001.

JUTTE, Bart. **Ten golden rules of project risk management**. [S.l.]: Concilio business solutions for professionals, 2008.

KANG, Shi et al. A neural network approach for software risk analysis. In: ICDM Workshops 2006, 2006, Hong Kong. **Sixth IEEE International Conference on Data Mining Workshops**. Hong Kong: ICDM Workshops 2006, 2006. Disponível em: . Acesso em: 16 mar. 2010.

KEIL, Mark et al. The influence of checklists and roles on software practicioner risk perception and decision-making. In: HICSS'06, 2006, Hawaii. **Proceedings of the 39th Annual Hawaii International Conference on System Sciences**. Hawaii: HICCS'06, 2006. Disponível em:

. Acesso em: 16 mar. 2010

LAKATOS, Eva Maria; MARCONI, Marina de Andrade. **Fundamentos de Metodologia Científica**. São Paulo: Atlas, 1991.

LEVESON, Nancy. Medical Devices: The Therac-25. In: **Safeware: system safety and computers**. [S.I.]: Addison-Wesley, 1995. Disponível em: http://sunnyday.mit.edu/papers/therac.pdf>. Acesso em: 16 fev. 2010.

LEVY, Yair; ELLIS, Timothy J. A systems aproach to conduct an effective literature review in support of information systems research. **Informing Science Journal**, Florida, vol. 9, p. 181 – 212, 2006. Disponível em: http://inform.nu/Articles/Vol9/V9p181-212Levy99.pdf>. Acesso em: 24 fev. 2010.

McNEIL, Alexander J.; FREY, Rüdiger; EMBRECHTS, Paul. **Quantitative risk management**: concepts, techniques and tools. Princeton: Princeton University Press, 2005.

MENEZES JÚNIOR, Júlio Venâncio de. **RBTTool**: proposta de ferramenta de automação das atividades de teste baseado em riscos. 2009. 63 f. Trabalho de Conclusão de Curso (Graduação em Engenharia da Computação) – Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife, 2009. Disponível em: http://tcc.dsc.upe.br/. Acesso em: 01 mar. 2010.

MERRIAM-WEBSTER. **Merrian-Webster on-line**. Springfield: Merrian-Webster, [200-?]. Disponível em: http://www.merriam-webster.com. Acesso em: 08 mai. 2010.

MOLAK, Vlasta. **Fundamentals of risk analisys and risk management**. [Boca Raton]: Lewis Publishers, 1997.

NORTHOVER, Mandy *et al.* Towards a philosophy of software development: 40 years after the birth of software engineering. **Journal for General Philosophy of Science**, [New York?], v. 39, n.1., Sept. 2008. Disponível em: http://www.springerlink.com/content/m7723416410k21g4/. Acesso em: 16 mar. 2010.

OLIVEIRA, Keldjan Alves de. **Um modelo para identificação de riscos no teste de software**. 2008. 55 f. Trabalho de Conclusão de Curso (Graduação em Engenharia da Computação) – Escola Politécnica de Pernambuco, Universidade de Pernambuco, Recife, 2008. Disponível em: http://tcc.dsc.upe.br/. Acesso em: 01 mar. 2010.

PANDIAN, C. Ravindranath. **Applied software risk management**: a guide for software managers. [Boca Raton]: Auerbach Publications, 2007.

PASQUARELLI, Maria Luiza Rigo. **Normas para apresentação de trabalhos acadêmicos**. 2. ed. Osasco: EDIFIEO, 2004. Disponível em: http://www.fieo.br/v1/acervo/download/normas_trabalhos_academicos.pdf>. Acesso em: 09 jun. 2007.

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE CAMPINAS. Sistema de Bibliotecas e Informação. **Normas para apresentação de trabalhos acadêmicos da PUC-Campinas**. Campinas: PUC-Campinas, 2005. Disponível em: <www.puc-campinas.edu.br/biblioteca/doc/NORMAS-2005.pdf>. Acesso em: 09 jun. 2007.

PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS. Pró-Reitoria de Graduação. Sistema de Bibliotecas. **Padrão PUC Minas de normalização**: normas da ABNT para apresentação de trabalhos científicos, teses, dissertações e monografias. Belo Horizonte: PUC Minas, 2007. Disponível em: http://www.pucminas.br/documentos/normalizacao_monografias.pdf>. Acesso em: 09 jun. 2007.

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO. Pós-Graduação. **Normas para apresentação de teses e** dissertações. Rio de Janeiro: PUC-Rio, 2001. Disponível em: <www.puc-rio.br/ensinopesq/ccpg/ download/normas.pdf>. Acesso em: 09 jun. 2007.

PRESSBURGER, Thomas *et al.* Infusing software assurance research techniques into use. **IEEE Aerospace Conference # 1506**, Manhattan Beach, v.1, Sept. 2005. Disponível em: http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/38052/1/05-3175.pdf>. Acesso em: 10 fev. 2010.

PRIBERAM INFORMÁTICA. **Dicionário da Língua Portuguesa on-line**. Lisboa: Priberam Informática, [200?]. Disponível em: http://www.priberam.pt/dlpo/dlpo.aspx. Acesso em: 01 mai. 2010.

RESNICK, Robert; HALLIDAY, David. **Física**. 4. ed., Rio de Janeiro: LTC, [1983?]. 4 v. em 3.

RIBEIRO, Lucio *et al.* A casa study for the implementation of an agile risk management process in multiple projects environments. **PICMET 2009 Proceedings**, Oregon, aug. 2009. Disponível em:
. Acesso em: 16 mar. 2010.

ROSS, Kenneth A.; WRIGHT, Charles R. B.. **Discrete mathematics**. [S.I.]: Prentice Hall, [1992?].

SENAC. Sistema de Informação e Conhecimento do SENAC. **Guia para elaboração de trabalhos acadêmicos, referências e citações**. 2. ed. Rio de Janeiro: SENAC, 2006. Disponível em: <www.senac.br/sics/manual/trabalho_academico06.pdf>. Acesso em: 09 jun. 2007.

SOMME 2005.	ERVILLE, lan. Ingenería del softwar	·e . 7a ed. Madrid: Pearson Educació	n,
	. Software engineering . 8 th ed. [S.I.]	: China Machine Press, [2007?].	

TREVISAN, Rosana (Coord.). **Michaelis moderno dicionário da língua portuguesa on–line**. São Paulo: Melhoramentos, 2007. Disponível em:

http://michaelis.uol.com.br/moderno/portugues/index.php. Acesso em: 08 mai. 2010.

UNIVERSIDADE CATÓLICA DE PETROPÓLIS. **Monografia**. [S.n.]: Petrópolis, [20-?]. Disponível em: <www.inf.ucp.br/downloads/pdfs/ monografia.pdf>. Acesso em: 13 ago. 2004.

UNIVERSIDADE DE SÃO PAULO. Divisão de Biblioteca da EPUSP. **Diretrizes para apresentação de dissertações e teses**. 3. ed. São Paulo: USP, 2006. 103p. Disponível em: <www.pece.org.br/servicos/ diretrizesUSP.pdf >. Acesso em: 01 mar. 2007.

UNIVERSIDADE DE SÃO PAULO. Sistema Integrado de Bibliotecas SIBi. **Diretrizes para apresentação de dissertações e teses da USP**: documento eletrônico e impresso. São Paulo: SIBi-USP, 2004. Disponível em: <www.teses.usp.br/info/diretrizesfinal.pdf>. Acesso em: 09 jun. 2007.

UNIVERSIDADE ESTADUAL PAULISTA. Biblioteca UNESP Rio Claro. **Apresentação de citações em documentos**: ABNT/ NBR 10520/2002. Rio Claro/SP: Biblioteca UNESP, [200?]. Disponível em: http://www.rc.unesp.br/biblioteca/arquivos/CITACOES.ppt. Acesso em: 09 jun. 2007.

Referências : ABNT/ NBR 6023: 2002. Rio Claro/SP: Bil [200?]. Disponível em: http://www.rc.unesp.br/biblioteca/arquivoREFERENCIAS.ppt . Acesso em: 09 jun. 2007.	
Trabalhos acadêmicos: ABNT/ NBR 14724: 2002. Rio 0 UNESP, [200?]. Disponível em: < http://www.rc.unesp.br/biblioteca/arquivos/TRABALHOS.ppt>. Ac	

UNIVERSIDADE ESTADUAL PAULISTA. Coordenadoria Geral de Bibliotecas. **Normatização documentária para a produção científica da UNESP**: normas para apresentação de referência segundo a NBR 6023:2002 da ABNT. São Paulo, 2003. Disponível em: http://www.biblioteca.unesp.br/pages/ normalizacao.pdf>. Acesso em: 12 ago. 2004.

2007.

UNIVERSIDADE ESTADUAL PAULISTA. Instituto de Geociências e Ciências Exatas. **Normas para apresentação de trabalhos acadêmicos**. Rio Claro/SP: Instituto de Geociências e Ciências Exatas, [200?]. Disponível em: <www.rc.unesp.br/igce/pos/normas.pdf>. Acesso em: 09 jun. 2007.

UNIVERSIDADE FEDERAL DE SÃO PAULO. Escola Paulista de Medicina. **Curso de revisão sistemática e metaanálise.** São Paulo: UNIFESP, 2001. Disponível em: http://www.virtual.epm.br/cursos/metanalise/#>. Acesso em: 02 fev. 2010.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. **Manual para elaboração de dissertações e teses**. 2. ed. Rio de Janeiro: UFRJ, 2001. Disponível em: www.iq.ufrj.br/biblioteca/academic/manual_tese.pdf>. Acesso em: 09 jun. 2007.

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO. Sistema de Bibliotecas e Informação. Comitê Técnico de Editoração. **Manual para elaboração e normalização de monografias**. 3. ed. Rio de Janeiro: UFRJ, 2004. Disponível em: www.facc.ufrj.br/manual_teses.pdf>. Acesso em: 09 jun. 2007.

WATERS, Kelly. Why most IT projects fail and how Agile Principles help. **Agile Software Development Made Easy!**, [s.l.], aug. 2007. Disponível em: http://www.agile-software-development.com/2007/08/why-most-it-projects-fail-and-how-agile.html>. Acesso em: 05 mai. 2010.

WORD REFERENCE. **WordReference.com**. [S.I.]: Word Reference, [200-?]. Disponível em: http://www.wordreference.com. Acesso em: 04 mai. 2010.

APÊNDICE A

FORMULÁRIO DE EXTRAÇÃO DE DADOS DEFINIDO PARA A REVISÃO SISTEMÁTICA CONDUZIDA

FABIANA FIGUEIRA SANCHES FL EXTRAÇÃO DE DADOS PARA REVISÃO										
°DO STUDO RIMÁRIO	EXPRESSÃO DE BUSCA	SITE	ANO	TÍTULO DA PUBLICAÇÃO	TÉCNICAS IDENTIFICADAS	CATEGORIA DA TÉCNICA	APLIC AÇÃO	QUALIFICAÇÃO FINAL	LIMITAÇÕES	OBSERVAÇÕES
			-							

Figura 10 – Reprodução de Formulário de Extração de Dados Definido para a Revisão Sistemática Conduzida.

APÊNDICE B

RELAÇÃO COMPLETA DE FONTES-PRÉ-SELECIONADAS NA REVISÃO SISTEMÁTICA

- DELIBERATE IGNORANCE IN PROJECT RISK MANAGEMENT
- A PROJECT CONTINGENCY FRAMEWORK BASED ON UNCERTAINTY AND ITS CONSEQUENCES
- EVOLUTION OF PROJECT MANAGEMENT RESEARCH AS EVIDENCED BY PAPERS PUBLISHED IN THE INTERNATIONAL JOURNAL OF PROJECT MANAGEMENT
- THE ROLE OF MONITORING AND SHIRKING IN INFORMATION SYSTEMS PROJECT MANAGEMENT
- ORGANIZING FOR INNOVATION IN A PRODUCT DEVELOPMENT PROJECT: COMBINING INNOVATIVE AND RESULT ORIENTED WAYS OF WORKING – A CASE STUDY
- IMPROVING PROJECT OUTCOMES THROUGH OPERATIONAL RELIABILITY: A CONCEPTUAL MODEL
- AN INTEGRATED REAL OPTIONS EVALUATING MODEL FOR INFORMATION TECHNOLOGY PROJECTS UNDER MULTIPLE RISKS
- MANAGING RISKS IN MEGA DEFENSE ACQUISITION PROJECTS: PERFORMANCE, POLICY, AND OPPORTUNITIES
- WHEN PROJECT-BASED MANAGEMENT CAUSES DISTRESS AT WORK
- PROJECT MANAGEMENT AND NATIONAL CULTURE: A DUTCH-FRENCH CASE STUDY
- PROJECT MANAGEMENT DEPLOYMENT: THE ROLE OF CULTURAL FACTORS
- PROJECT MANAGEMENT DEPLOYMENT: THE ROLE OF CULTURAL FACTORS
- EVALUATING REAL OPTIONS FOR MITIGATING TECHNICAL RISK IN PUBLIC SECTOR R&D ACQUISITIONS
- SIGNIFICANCE OF PROJECT MANAGEMENT PERFORMANCE ASSESSMENT (PMPA) MODEL
- A COMPREHENSIVE MODEL FOR SELECTING INFORMATION SYSTEM PROJECT UNDER FUZZY ENVIRONMENT
- A COMPREHENSIVE MODEL FOR SELECTING INFORMATION SYSTEM PROJECT UNDER FUZZY ENVIRONMENT
- CRITICAL CHAIN AND RISK ANALYSIS APPLIED TO HIGH-RISK INDUSTRY MAINTENANCE: A CASE STUDY
- PROJECT MANAGEMENT STANDARDS DIFFUSION AND APPLICATION IN GERMANY AND SWITZERLAND
- THE P-FORM ORGANIZATION AND THE DYNAMICS OF PROJECT COMPETENCE: PROJECT EPOCHS IN ASEA/ABB. 1950–2000
- A MULTIPLE CRITERIA DECISION MODEL FOR ASSIGNING PRIORITIES TO ACTIVITIES IN PROJECT MANAGEMENT
- RETHINKING IT PROJECT MANAGEMENT: EVIDENCE OF A NEW MINDSET AND ITS IMPLICATIONS
- TOWARDS A CONCEPTUAL REFERENCE MODEL FOR PROJECT MANAGEMENT INFORMATION SYSTEMS
- FOUNDATIONS OF PROGRAM MANAGEMENT: A BIBLIOMETRIC VIEW
- EDITORIAL: CHANGE MANAGEMENT AND PROJECTS
- EDITORIAL: ACHIEVING IT PROJECT SUCCESS THROUGH CONTROL, MEASUREMENT, MANAGING EXPECTATIONS, AND TOP MANAGEMENT SUPPORT
- MANAGING USER EXPECTATIONS ON SOFTWARE PROJECTS: LESSONS FROM THE TRENCHES
- TOP MANAGEMENT SUPPORT: MANTRA OR NECESSITY?

- AN EXPERIMENTAL INVESTIGATION OF FACTORS INFLUENCING PERCEIVED CONTROL OVER A FAILING IT PROJECT
- SUCCESS IN IT PROJECTS: A MATTER OF DEFINITION?
- MANAGING PUBLIC-PRIVATE MEGAPROJECTS: PARADOXES, COMPLEXITY, AND PROJECT DESIGN
- FUZZY CRITICAL CHAIN METHOD FOR PROJECT SCHEDULING UNDER RESOURCE CONSTRAINTS AND UNCERTAINTY
- EDITORIAL: PROJECTS IN INNOVATION, INNOVATION IN PROJECTS SELECTED PAPERS FROM THE IRNOP VIII CONFERENCE
- EXPLORATION AND PROJECT MANAGEMENT
- MANAGING ROBUST DEVELOPMENT PROCESS FOR HIGH-TECH STARTUPS THROUGH MULTI-PROJECT LEARNING: THE CASE OF TWO EUROPEAN START-UPS
- MANAGING ROBUST DEVELOPMENT PROCESS FOR HIGH-TECH STARTUPS THROUGH MULTI-PROJECT LEARNING: THE CASE OF TWO EUROPEAN START-UPS
- THE PROJECT MANAGEMENT OFFICE AS AN ORGANISATIONAL INNOVATION
- INNOVATION IN PROJECT MANAGEMENT: VOICES OF RESEARCHERS
- BUILDING KNOWLEDGE IN PROJECTS: A PRACTICAL APPLICATION OF SOCIAL CONSTRUCTIVISM TO INFORMATION SYSTEMS DEVELOPMENT
- THE BALANCE BETWEEN ORDER AND CHAOS IN MULTI-PROJECT FIRMS: A CONCEPTUAL MODEL
- PROJECT PORTFOLIO MANAGEMENT THERE'S MORE TO IT THAN WHAT MANAGEMENT ENACTS
- ASSESSING RISK AND UNCERTAINTY INHERENT IN CHINESE HIGHWAY PROJECTS USING AHP
- ASSESSING RISK AND UNCERTAINTY INHERENT IN CHINESE HIGHWAY PROJECTS USING AHP
- PROJECT RISK MANAGEMENT PRACTICE: THE CASE OF A SOUTH AFRICAN UTILITY COMPANY
- PROJECT RISK MANAGEMENT PRACTICE: THE CASE OF A SOUTH AFRICAN UTILITY COMPANY
- PROJECT MANAGEMENT INFORMATION SYSTEMS: AN EMPIRICAL STUDY OF THEIR IMPACT ON PROJECT MANAGERS AND PROJECT SUCCESS
- PROJECT MANAGEMENT OF UNEXPECTED EVENTS
- IN SEARCH OF OPPORTUNITY MANAGEMENT: IS THE RISK MANAGEMENT PROCESS ENOUGH?
- THE APPLICATION OF COGNITIVE MAPPING METHODOLOGIES IN PROJECT MANAGEMENT RESEARCH
- THE SUBLIMINAL CHARACTERISTICS OF PROJECT MANAGERS: AN EXPLORATORY STUDY OF OPTIMISM OVERCOMING CHALLENGE IN THE PROJECT MANAGEMENT WORK ENVIRONMENT
- 'CULTURAL' DIFFERENCES IN PROJECT RISK PERCEPTION: AN EMPIRICAL COMPARISON OF CHINA AND CANADA
- A REDEFINITION OF THE PROJECT RISK PROCESS: USING VULNERABILITY TO OPEN UP THE EVENT-CONSEQUENCE LINK
- MANAGERIAL PERCEPTIONS OF POLITICAL RISK IN INTERNATIONAL PROJECTS
- BOOK REVIEW: D. VAN WELL-STAM, F. LINDENAAR, S. VAN KINDEREN, B. VAN DEN BUNT, PROJECT RISK MANAGEMENT: AN ESSENTIAL TOOL FOR MANAGING AND CONTROLLING PROJECTS, KOGAN PAGE, LONDON, 2004, SOFT BACK, 180 PP, £19.95, ISBN 0-7494-4275-1
- APPLICATION OF A FUZZY BASED DECISION MAKING METHODOLOGY TO CONSTRUCTION PROJECT RISK ASSESSMENT
- TRIGGERS FOR A FLEXIBLE APPROACH TO PROJECT MANAGEMENT WITHIN UK FINANCIAL SERVICES
- OPTIMIZING THE DEVELOPMENT SCHEDULE OF RESORT PROJECTS BY INTEGRATING SIMULATION AND GENETIC ALGORITHM
- BOOK REVIEW: PETER J. EDWARDS, PAUL A. BOWEN, RISK MANAGEMENT IN PROJECT ORGANISATIONS, UNIVERSITY OF NEW SOUTH WALES PRESS, SYDNEY, 2005, SOFT BACK, 189 PP, \$39.95, ISBN 0 6840- 574-4

- THE APPLICATION OF COGNITIVE MAPPING METHODOLOGIES IN PROJECT MANAGEMENT RESEARCH
- AN EPISTEMOLOGICAL EVALUATION OF RESEARCH INTO PROJECTS AND THEIR MANAGEMENT: METHODOLOGICAL ISSUES
- A GAME THEORY APPROACH FOR THE ALLOCATION OF RISKS IN TRANSPORT PUBLIC PRIVATE PARTNERSHIPS
- THE CHANGING PARADIGMS OF PROJECT MANAGEMENT
- MANAGING VALUE AS A MANAGEMENT STYLE FOR PROJECTS
- INTEGRATING INFORMATION TECHNOLOGY IN THE CONSTRUCTION INDUSTRY: TECHNOLOGY READINESS ASSESSMENT OF MALAYSIAN CONTRACTORS
- THE USE OF INFORMATION TECHNOLOGY BY THE QUANTITY SURVEYING PROFESSION IN HONG KONG
- EDITORIAL: WHAT DO WE WANT FROM A THEORY OF PROJECT MANAGEMENT? A RESPONSE TO RODNEY TURNER
- PERSPECTIVES ON PROJECT MANAGEMENT
- THE IMPACT OF PURITAN IDEOLOGY ON ASPECTS OF PROJECT MANAGEMENT
- LEARNING WITHIN PROJECT PRACTICE: COGNITIVE STYLES EXPOSED
- THE IMPORTANCE OF CONTEXT IN PROGRAMME MANAGEMENT: AN EMPIRICAL REVIEW OF PROGRAMME PRACTICES
- THE IMPORTANCE OF CONTEXT IN PROGRAMME MANAGEMENT: AN EMPIRICAL REVIEW OF PROGRAMME PRACTICES
- EDITORIAL: SPECIAL ISSUE ON RETHINKING PROJECT MANAGEMENT (EPSRC NETWORK 2004–2006)
- THE IMPORTANCE OF 'PROCESS' IN RETHINKING PROJECT MANAGEMENT: THE STORY OF A UK GOVERNMENT-FUNDED RESEARCH NETWORK
- RETHINKING PROJECT MANAGEMENT: RESEARCHING THE ACTUALITY OF PROJECTS
- EDITORIAL: GOVERNANCE ISSUES IN PUBLIC PRIVATE PARTNERSHIPS
- ROLE OF PUBLIC PRIVATE PARTNERSHIPS TO MANAGE RISKS IN PUBLIC SECTOR PROJECTS IN HONG KONG
- STAKEHOLDER MANAGEMENT FOR PUBLIC PRIVATE PARTNERSHIPS
- GOOD PROJECT GOVERNANCE FOR PROPER RISK ALLOCATION IN PUBLIC-PRIVATE PARTNERSHIPS IN INDONESIA
- THE ROLE OF INTUITION AND IMPROVISATION IN PROJECT MANAGEMENT
- A TWO-WAY INFLUENCE BETWEEN BUSINESS STRATEGY AND PROJECT MANAGEMENT
- RISK AVOIDANCE IN BIDDING FOR SOFTWARE PROJECTS BASED ON LIFE CYCLE MANAGEMENT THEORY
- THE EFFECTS OF THE FORMAT OF SOFTWARE PROJECT BIDDING PROCESSES
- PROJECT OVERLOAD: AN EXPLORATORY STUDY OF WORK AND MANAGEMENT IN MULTI-PROJECT SETTINGS
- KEY POINTS OF CONTENTION IN FRAMING ASSUMPTIONS FOR RISK AND UNCERTAINTY MANAGEMENT
- CRITICAL DETERMINANTS OF PROJECT COORDINATION
- A LIFE CYCLE EVALUATION OF CHANGE IN AN ENGINEERING ORGANIZATION: A CASE STUDY
- DEFINING SUCCESS FOR SOFTWARE PROJECTS: AN EXPLORATORY REVELATION
- DATA MINING MODEL FOR IDENTIFYING PROJECT PROFITABILITY VARIABLES
- PREDICTING PROJECT PERFORMANCE THROUGH NEURAL NETWORKS
- PROJECT MANAGEMENT EFFECTIVENESS IN PROJECT-ORIENTED BUSINESS ORGANIZATIONS
- UNCOVERING THE TRENDS IN PROJECT MANAGEMENT: JOURNAL EMPHASES OVER THE LAST 10 YEARS
- INTERPRETING AN ERP-IMPLEMENTATION PROJECT FROM A STAKEHOLDER PERSPECTIVE
- MANAGEMENT OF FLEXIBILITY IN PROJECTS
- UNDERSTANDING INTERNALLY GENERATED RISKS IN PROJECTS

- INTERVENING CONDITIONS ON THE MANAGEMENT OF PROJECT RISK: DEALING WITH UNCERTAINTY IN INFORMATION TECHNOLOGY PROJECTS
- CLIENT VERSUS CONTRACTOR PERSPECTIVES ON PROJECT SUCCESS CRITERIA
- THE ROLE OF PROJECT MANAGEMENT IN UNIVERSITY COMPUTING RESOURCE DEPARTMENTS
- MANAGING TEAM ENTREES AND WITHDRAWALS DURING THE PROJECT LIFE CYCLE
- MANAGING PROJECT EXPECTATIONS IN HUMAN SERVICES INFORMATION SYSTEMS IMPLEMENTATIONS: THE CASE OF HOMELESS MANAGEMENT INFORMATION SYSTEMS
- THE IMPACT OF PROJECT PORTFOLIO MANAGEMENT ON INFORMATION TECHNOLOGY PROJECTS
- DECISION SUPPORT SYSTEM FOR SELECTING THE PROPER PROJECT DELIVERY METHOD USING ANALYTICAL HIERARCHY PROCESS (AHP)
- PREDICTING SOFTWARE DEFECTS IN VARYING DEVELOPMENT LIFECYCLES USING BAYESIAN NETS
- COLLABORATION IN SOFTWARE ENGINEERING: A ROADMAP
- DISTRIBUTED SCRUM: AGILE PROJECT MANAGEMENT WITH OUTSOURCED DEVELOPMENT TEAMS
- USING THE INCREMENTAL COMMITMENT MODEL TO INTEGRATE SYSTEM ACQUISITION, SYSTEMS ENGINEERING, AND SOFTWARE ENGINEERING
- SOFTWARE PROJECT ECONOMICS: A ROADMAP
- PROJECT DATA INCORPORATING QUALITATIVE FACTS FOR IMPROVED SOFTWARE DEFECT PREDICTION
- SOFTWARE DEVELOPMENT RISK AND PROJECT PERFORMANCE MEASUREMENT: EVIDENCE IN KOREA
- AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY FOR SOFTWARE PROJECT ESTIMATION AND MEASUREMENT SYSTEMS
- AN INTELLIGENT EARLY WARNING SYSTEM FOR SOFTWARE QUALITY IMPROVEMENT AND PROJECT MANAGEMENT
- OPTION-BASED RISK MANAGEMENT: A FIELD STUDY OF SEQUENTIAL IT INVESTMENT DECISIONS
- STATE OF THE PRACTICE: AN EXPLORATORY ANALYSIS OF SCHEDULE ESTIMATION AND SOFTWARE PROJECT SUCCESS PREDICTION
- EVALUATING SOFTWARE PROJECT PORTFOLIO RISKS
- SOFTWARE PROJECT MANAGEMENT WITH GAS
- MOBILIZATION OF SOFTWARE DEVELOPERS: THE FREE SOFTWARE MOVEMENT
- RATIONALE MANAGEMENT IN SOFTWARE ENGINEERING
- VIGILNET: AN INTEGRATED SENSOR NETWORK SYSTEM FOR ENERGY-EFFICIENT SURVEILLANCE
- EXPERIENCES BUILDING PLANETLAB
- A FRESH LOOK AT THE RELIABILITY OF LONG-TERM DIGITAL STORAGE
- A SURVEY OF DYNAMIC SPECTRUM ACCESS
- HOW BODIES MATTER: FIVE THEMES FOR INTERACTION DESIGN
- YALE: RAPID PROTOTYPING FOR COMPLEX DATA MINING TASKS
- HYPERMEDIA SUPPORT FOR ARGUMENTATION-BASED RATIONALE
- SOFTWARE SELF-HEALING USING COLLABORATIVE APPLICATION COMMUNITIES
- MANAGING LARGE-SCALE WORKFLOW EXECUTION FROM RESOURCE PROVISIONING TO PROVENANCE TRACKING: THE CYBERSHAKE EXAMPLE
- FLIGHT DATA RECORDER: MONITORING PERSISTENT-STATE INTERACTIONS TO IMPROVE SYSTEMS MANAGEMENT
- BUMP IN THE ETHER: A FRAMEWORK FOR SECURING SENSITIVE USER INPUT
- STAYING OPEN TO INTERPRETATION: ENGAGING MULTIPLE MEANINGS IN DESIGN AND EVALUATION
- M.: MYONTOLOGY: THE MARRIAGE OF ONTOLOGY ENGINEERING AND COLLECTIVE INTELLIGENCE
- AGENT-BASED PARTICIPATORY SIMULATIONS: MERGING MULTI-AGENT; SYSTEMS AND ROLE-PLAYING GAMES

- THE BLUEPRINT OF A REFERENCE CRITICAL INFORMATION INFRASTRUCTURE ARCHITECTURE
- MODELLING RISK AND IDENTIFYING COUNTERMEASURES IN ORGANIZATIONS
- IDENTIFYING REFACTORINGS FROM SOURCECODE CHANGES
- METAMODELING THE REQUIREMENTS OF WEB SYSTEMS
- A VIEW OF 20TH AND 21ST CENTURY SOFTWARE ENGINEERING
- CHALLENGES IN VISUAL DATA ANALYSIS
- MDI A RULE-BASED MULTI-DOCUMENT AND TOOL INTEGRATION APPROACH
- SOFTWARE ENGINEERING FOR AUTOMOTIVE SYSTEMS: A ROADMAP
- WHAT ARE EMERGENT PROPERTIES AND HOW DO THEY AFFECT THE ENGINEERING OF COMPLEX SYSTEMS? RELIABILITY ENGINEERING AND SYSTEM SAFETY
- HOW DEVELOPERS COPY
- APPLYING FEEDBACK CONTROL TO A REPLICA MANAGEMENT SYSTEM
- THE IMPACT OF AN AGILE METHODOLOGY ON THE WELL BEING OF DEVELOPMENT TEAMS
- DESIGNING COOPERATIVE IS: EXPLORING AND EVALUATING ALTERNATIVES
- A SOCIO-TECHNICAL FRAMEWORK FOR SUPPORTING PROGRAMMERS
- USING A FORMAL METHOD TO MODEL SOFTWARE DESIGN IN XP PROJECTS
- THE MAKING OF TRIGGER AND THE AGILE ENGINEERING OF ARTIST-SCIENTIST COLLABORATION
- MANAGING LARGE SCALE DATA FOR EARTHQUAKE SIMULATIONS
- EXPERIENCES TRACKING AGILE PROJECTS: AN EMPIRICAL STUDY
- URBANSIM: USING SIMULATION TO INFORM PUBLIC DELIBERATION AND DECISION MAKING
- CREATIVITY VERSUS THE PERCEPTION OF CREATIVITY IN COMPUTATIONAL SYSTEMS
- SIMSE: A SOFTWARE ENGINEERING SIMULATION ENVIRONMENT FOR SOFTWARE PROCESS EDUCATION
- A COMPARISON OF UPPER ONTOLOGIES
- PASTWATCH: A DISTRIBUTED VERSION CONTROL SYSTEM
- COMMON SENSE REASONING FROM CYC TO INTELLIGENT ASSISTANT
- A DISTRIBUTED TABLING ALGORITHM FOR RULE BASED POLICY SYSTEMS
- DRIVING AND MANAGING ARCHITECTURAL DECISIONS WITH ASPECTS
- STATIC VERIFICATION OF UML MODEL CONSISTENCY
- REASONING SUPPORT FOR ONTOLOGY DESIGN
- A POSTERIORI COMPLIANCE CONTROL
- APPLYING REAL OPTIONS THINKING TO INFORMATION SECURITY IN NETWORKED ORGANIZATIONS
- MODELING SAFETY CASE EVOLUTION EXAMPLES FROM THE AIR TRAFFIC MANAGEMENT DOMAIN
- SADAAM: SOFTWARE AGENT DEVELOPMENT AN AGILE METHODOLOGY. LADS/DURHAM AGENTS
- EMPOWERING SOFTWARE MAINTAINERS WITH SEMANTIC WEB TECHNOLOGIES
- EXPERIENCES WITH MARMOSET: DESIGNING AND USING AN ADVANCED SUBMISSION AND TESTING SYSTEM FOR PROGRAMMING COURSES
- FAURA. A DYNAMIC WORKFLOW MANAGEMENT SYSTEM FOR COORDINATION OF COOPERATIVE ACTIVITIES
- INTEGRATING SECURITY AND USABILITY INTO THE REQUIREMENTS AND DESIGN PROCESS
- DESIGN OF A MODELLING LANGUAGE FOR INFORMATION SYSTEM SECURITY RISK MANAGEMENT
- A QUALITATIVE INVESTIGATION OF UML MODELING CONVENTIONS
- AN APPROACH TO IMPROVING PARAMETRIC ESTIMATION MODELS IN THE CASE OF VIOLATION OF ASSUMPTIONS BASED UPON RISK ANALYSIS
- ADOPTING CURVILINEAR COMPONENT ANALYSIS TO IMPROVE SOFTWARE COST ESTIMATION ACCURACY. MODEL, APPLICATION STRATEGY, AND AN EXPERIMENTAL VERIFICATION

- LARGE SCALE DETECTION OF IRREGULARITIES IN ACCOUNTING DATA
- MOAST AND USARSIM A COMBINED FRAMEWORK FOR THE DEVELOPMENT AND TESTING OF AUTONOMOUS SYSTEMS
- A PRIMER FOR REAL-TIME SIMULATION OF LARGE-SCALE NETWORKS
- INFORMATION GOVERNANCE IN NHS'S NPFIT: A CASE FOR POLICY SPECIFICATION
- MOTIVES FOR ESTABLISHING SHARED SERVICE CENTERS IN PUBLIC ADMINISTRATIONS
- COLLABORATIVE MULTIDISCIPLINARY DESIGN IN VIRTUAL ENVIRONMENTS
- THE IMPORTANCE OF IS STAKEHOLDER PERSPECTIVES AND PERCEPTIONS TO REQUIREMENTS NEGOTIATION
- BALANCING AGILITY AND DISCIPLINE WITH XPRINCE
- FORMAL ANALYSIS OF SOME SECURE PROCEDURES FOR CERTIFICATE DELIVERY
- A COMPARATIVE EVALUATION OF THREE APPROACHES TO SPECIFYING SECURITY REQUIREMENTS
- INTERACTION DESIGNERS ON EXTREME PROGRAMMING TEAMS: CASE STUDIES FROM THE REAL WORLD
- THE ECONOMIC IMPACT OF SOFTWARE PROCESS VARIATIONS
- PERSONAL RIGHTS MANAGEMENT,: TAMING CAMERAPHONES FOR INDIVIDUAL PRIVACY MANAGEMENT
- A COLLABORATIVE APPROACH FOR REENGINEERING-BASED PRODUCT LINE SCOPING
- NATURAL LANGUAGE TECHNOLOGY FOR INFORMATION INTEGRATION IN BUSINESS INTELLIGENCE
- APPROPRIATE AGILE MEASUREMENTS: USING METRICS AND DIAGNOSTICS TO DELIVER BUSINESS VALUE
- SENSOR SELECTION AND OPTIMIZATION FOR HEALTH ASSESSMENT OF AEROSPACE SYSTEMS
- STRUCTURING SOFTWARE PROCESS METRICS A HOLISTIC SEMANTIC NETWORK BASED OVERVIEW
- A FULLY VIRTUAL MULTI-NODE 1553 BUS COMPUTER
- RATIONAL CHOICE OF SECURITY MEASURES VIA MULTI-PARAMETER ATTACK TREES
- ADVANCED MIXED REALITY TECHNOLOGIES FOR SURVEILLANCE AND RISK PREVENTION APPLICATIONS
- APPROACHES FOR ENSURING SECURITY AND PRIVACY ON UNPLANNED UBIQUITOUS COMPUTING INTERACTIONS
- METHODS AND GUIDELINES FOR THE DESIGN AND DEVELOPMENT OF DOMESTIC UBIQUITOUS COMPUTING APPLICATIONS
- AN INTEGRATED SECURITY VERIFICATION AND SECURITY SOLUTION DESIGN TRADE-OFF ANALYSIS
- SYSTEM MODELING FOR SYSTEMATIC DEVELOPMENT OF GROUPWARE APPLICATIONS
- ON THE TESTING MATURITY OF SOFTWARE PRODUCING ORGANIZATIONS: DETAILED DATA
- AN INFORMATION SYSTEMS SECURITY RISK ASSESSMENT MODEL UNDER DEMPSTER-SHAFER THEORY OF BELIEF FUNCTIONS
- A PERVASIVE COMPUTING SYSTEM FOR THE OPERATING ROOM OF THE FUTURE
- COMMON REQUIREMENTS PROBLEMS, THEIR NEGATIVE CONSEQUENCES, AND INDUSTRY BEST PRACTICES TO HELP SOLVE THEM
- SOFTWARE COST ESTIMATION MODEL BASED ON INTEGRATION OF MULTIAGENT AND CASE-BASED REASONING
- EXPERIENCES WITH GOAL-ORIENTED MODELING OF ORGANIZATIONAL CHANGE
- DOCUMENTING THE PROGRESS OF THE SYSTEM DEVELOPMENT
- DIRECT ANONYMOUS ATTESTATION (DAA): ENSURING PRIVACY WITH CORRUPT ADMINISTRATORS
- THE LANDSCAPE OF CONCURRENT DEVELOPMENT
- CALLABLE SWAPS, SNOWBALLS AND VIDEOGAMES

- MAKE THE MOST OF YOUR TIME: HOW SHOULD THE ANALYST WORK WITH AUTOMATED TRACEABILITY TOOLS
- PROJECT ENSAYO: A VIRTUAL EMERGENCY OPERATIONS CENTER FOR DISASTER MANAGEMENT RESEARCH, TRAINING, AND DISCOVERY
- 3D FOREST STRUCTURE ANALYSIS FROM OPTICAL AND LIDAR DATA
- IMPROVING THE CUSTOMER CONFIGURATION UPDATE PROCESS BY EXPLICITLY MANAGING SOFTWARE KNOWLEDGE
- MEETING THE REQUIREMENTS AND LIVING UP TO EXPECTATIONS
- ON THE IMPORTANCE OF TEACHING PROFESSIONAL ETHICS TO COMPUTER SCIENCE STUDENTS
- ROBUST AND DATA-DRIVEN OPTIMIZATION: MODERN DECISION-MAKING UNDER UNCERTAINTY
- IMPLEMENTING PERSISTENT IDENTIFIERS
- TOWARDS DISCOVERING DATA CENTER GENOME USING SENSOR NETS
- TOWARDS PARADIGMINDEPENDENT SOFTWARE ASSESSMENT
- RISØ-R-1570(EN) A DEVELOPMENT PROCESS META-MODEL FOR WEB BASED EXPERT SYSTEMS: THE WEB ENGINEERING POINT OF VIEW
- PRIMARY RESPONSIBILITY
- THE ROLE OF A NATIONAL LIBRARY IN SUPPORTING
- FUTURE: A METHOD AND KNOWLEDGE-BASE
- PREFACE PURPOSE AUDIENCE BACKGROUND REVISIONS CONVENTIONS
- TRADE STUDIES WITH UNCERTAIN INFORMATION
- SAFETY GUIDELINES FOR CONDUCTING MAGNETIC RESONANCE IMAGING (MRI) EXPERIMENTS INVOLVING HUMAN SUBJECTS
- RESEARCH STATEMENT
- CAPITAL PROGRAMMING GUIDE
- KEEP PERSONAL INFORMATION SAFE BRING LOGIC INTO PLAY DEDUCTIVE REASONING
- SIMULATOR FOR SOFTWARE MAINTAINABILITY
- AND MANAGEMENT
- A STUDY OF CURATION AND PRESERVATION ISSUES IN THE ECRYSTALS DATA REPOSITORY AND PROPOSED FEDERATION
- STUDY 237: DEVELOPMENT AND USE OF QSARS FOR REGULATORY SCREENING AND PRIORITIZATION OF CHEMICALS: EVALUATION OF ENVIRONMENTAL AND TOXICOLOGICAL
- CRITICAL REVIEW OF STOCHASTIC SIMULATION LITERATURE AND APPLICATIONS FOR HEALTH ACTUARIES
- PHASES OF PROJECT AND SCHEDULE ADDITIONAL NOTES MILESTONE DEADLINE WEIGHTING
- TITLE SOFTWARE METRICS: TOWARD BUILDING PROXY MODELS.
- IMAGE-GUIDED SURGERY AND MEDICAL ROBOTICS IN THE CRANIAL AREA
- COMPUTER SYSTEM SAFETY AND HAZARD ANALYSIS
- USING SOLARIS™ OPERATING SYSTEM SECURITY TO ADDRESS PAYMENT CARD INDUSTRY (PCI) DSS COMPLIANCE: A SYSTEMIC APPROACH TO SECURITY
- FINAL REPORT FOR NCHRP REPORT 574: GUIDANCE FOR COST ESTIMATION AND MANAGEMENT FOR HIGHWAY PROJECTS DURING PLANNING, PROGRAMMING, AND PRECONSTRUCTION
- PHILLIP BOXER BOXER RESEARCH LIMITED
- AMERICAN ASSOCIATION OF STATE HIGHWAY
- TEST PROCESS MATURITY MODELS A HISTORICAL ACCOUNT
- SAFETY RISK ASSESSMENT BY MONTE CARLO SIMULATION OF COMPLEX SAFETY CRITICAL OPERATIONS
- A CLASSIFICATION OF UNCERTAINTY FOR EARLY PRODUCT AND SYSTEM DESIGN
- DELIBERATE IGNORANCE IN PROJECT RISK MANAGEMENT
- THE RATIONAL CHOICE OF NOT APPLYING PROJECT RISK MANAGEMENT IN INFORMATION TECHNOLOGY PROJECTS

- MONITORING RISK RESPONSE ACTIONS FOR EFFECTIVE PROJECT RISK MANAGEMENT
- A FUZZY APPROACH TO CONSTRUCTION PROJECT RISK ASSESSMENT
- PROJECT RISK IDENTIFICATION AND ASSESSMENT SIMULTANEOUSLY USING MULTI-ATTRIBUTE GROUP DECISION MAKING TECHNIQUE
- PROJECT RISK EVALUATION USING A FUZZY ANALYTIC HIERARCHY PROCESS: AN APPLICATION TO INFORMATION TECHNOLOGY PROJECTS
- A STUDY OF ONTOLOGY-BASED RISK MANAGEMENT FRAMEWORK OF CONSTRUCTION PROJECTS THROUGH PROJECT LIFE CYCLE
- DOES RISK MANAGEMENT CONTRIBUTE TO IT PROJECT SUCCESS? A META-ANALYSIS OF EMPIRICAL EVIDENCE
- RISK MANAGEMENT CAPABILITY MATURITY MODEL FOR COMPLEX PRODUCT SYSTEMS (COPS) PROJECTS
- MONITORING RISK RESPONSE ACTIONS FOR EFFECTIVE PROJECT RISK MANAGEMENT
- EFFECT OF A VIRTUAL PROJECT TEAM ENVIRONMENT ON COMMUNICATION-RELATED PROJECT RISK
- AN EMPIRICAL ANALYSIS OF RISK COMPONENTS AND PERFORMANCE ON SOFTWARE PROJECTS
- RISK AVOIDANCE IN BIDDING FOR SOFTWARE PROJECTS BASED ON LIFE CYCLE MANAGEMENT THEORY
- SOFTWARE DEVELOPMENT RISK AND PROJECT PERFORMANCE MEASUREMENT: EVIDENCE IN KOREA
- EXPLORING THE RELATIONSHIP BETWEEN SOFTWARE PROJECT DURATION AND RISK EXPOSURE: A CLUSTER ANALYSIS
- RISK AND RISK MANAGEMENT IN SOFTWARE PROJECTS: A REASSESSMENT
- A COMPARATIVE STUDY OF IMPORTANT RISK FACTORS INVOLVED IN OFFSHORE AND DOMESTIC OUTSOURCING OF SOFTWARE DEVELOPMENT PROJECTS: A TWO-PANEL DELPHI STUDY
- SOFTWARE QUALITY AND IS PROJECT PERFORMANCE IMPROVEMENTS FROM SOFTWARE DEVELOPMENT PROCESS MATURITY AND IS IMPLEMENTATION STRATEGIES
- THE IMPACT OF SOFTWARE PROCESS STANDARDIZATION ON SOFTWARE FLEXIBILITY AND PROJECT MANAGEMENT PERFORMANCE: CONTROL THEORY PERSPECTIVE
- MANAGEMENT COMPETENCES, NOT TOOLS AND TECHNIQUES: A GROUNDED EXAMINATION OF SOFTWARE PROJECT MANAGEMENT AT WM-DATA
- DOES RISK MANAGEMENT CONTRIBUTE TO IT PROJECT SUCCESS? A META-ANALYSIS OF EMPIRICAL EVIDENCE
- LARGE ENGINEERING PROJECT RISK MANAGEMENT USING A BAYESIAN BELIEF NETWORK
- A WEB-BASED INTEGRATED SYSTEM FOR INTERNATIONAL PROJECT RISK MANAGEMENT
- MANAGING USER EXPECTATIONS ON SOFTWARE PROJECTS: LESSONS FROM THE TRENCHES
- RISK MANAGEMENT IN ERP PROJECT INTRODUCTION: REVIEW OF THE LITERATURE
- THE EFFECTS OF CHANGE CONTROL AND MANAGEMENT REVIEW ON SOFTWARE FLEXIBILITY AND PROJECT PERFORMANCE
- KNOWLEDGE MANAGEMENT IN SOFTWARE ENGINEERING: A SYSTEMATIC REVIEW OF STUDIED CONCEPTS, FINDINGS AND RESEARCH METHODS USED
- GENETIC ALGORITHM BASED SOFTWARE INTEGRATION WITH MINIMUM SOFTWARE RISK
- WHAT DO SOFTWARE PRACTITIONERS REALLY THINK ABOUT PROJECT SUCCESS: A CROSS-CULTURAL COMPARISON
- EFFECT OF A VIRTUAL PROJECT TEAM ENVIRONMENT ON COMMUNICATION-RELATED PROJECT RISK
- THE RELATION OF REQUIREMENTS UNCERTAINTY AND STAKEHOLDER PERCEPTION GAPS TO PROJECT MANAGEMENT PERFORMANCE

- AN EMPIRICAL ANALYSIS OF THE IMPACT OF SOFTWARE DEVELOPMENT PROBLEM FACTORS ON SOFTWARE MAINTAINABILITY
- ANTECEDENTS AND CONSEQUENCES OF TEAM POTENCY IN SOFTWARE DEVELOPMENT PROJECTS
- ANALYZING PROJECT MANAGEMENT RESEARCH: PERSPECTIVES FROM TOP MANAGEMENT JOURNALS
- MINING SOFTWARE REPOSITORIES FOR COMPREHENSIBLE SOFTWARE FAULT PREDICTION MODELS
- FIRE RISK MANAGEMENT SYSTEM FOR SAFE OPERATION OF LARGE ATMOSPHERIC STORAGE TANKS
- AN EMPIRICAL INVESTIGATION OF THE DRIVERS OF SOFTWARE OUTSOURCING DECISIONS IN JAPANESE ORGANIZATIONS
- DEVELOPMENT OF A TEAM MEASURE FOR TACIT KNOWLEDGE IN SOFTWARE DEVELOPMENT TEAMS
- THE ROLE OF MONITORING AND SHIRKING IN INFORMATION SYSTEMS PROJECT MANAGEMENT
- USING PLANNING POKER FOR COMBINING EXPERT ESTIMATES IN SOFTWARE PROJECTS
- AN INTEGRATED REAL OPTIONS EVALUATING MODEL FOR INFORMATION TECHNOLOGY PROJECTS UNDER MULTIPLE RISKS
- SOFTWARE PROJECT MANAGEMENT ANTI-PATTERNS
- AN EXPERIMENTAL INVESTIGATION OF FACTORS INFLUENCING PERCEIVED CONTROL OVER A FAILING IT PROJECT
- EDITORIAL: REFLECTIONS ON THE INFLUENCES OF THE COCOMO, SPIRAL AND THE WIN-WIN MODELS ON SOFTWARE PROJECT AND RISK MANAGEMENT
- UNDERSTANDING THE EFFECTS OF REQUIREMENTS VOLATILITY IN SOFTWARE ENGINEERING BY USING ANALYTICAL MODELING AND SOFTWARE PROCESS SIMULATION
- A FRAMEWORK FOR THE LIFE CYCLE MANAGEMENT OF INFORMATION TECHNOLOGY PROJECTS: PROJECTIT
- THE IMPACTS OF SOFTWARE PRODUCT MANAGEMENT
- IDENTIFICATION OF MORE RISKS CAN LEAD TO INCREASED OVER-OPTIMISM OF AND OVER-CONFIDENCE IN SOFTWARE DEVELOPMENT EFFORT ESTIMATES
- THE IMPACTS OF USER REVIEW ON SOFTWARE RESPONSIVENESS: MODERATING REQUIREMENTS UNCERTAINTY
- REDUCING SOFTWARE REQUIREMENT PERCEPTION GAPS THROUGH COORDINATION MECHANISMS
- CHOQUET INTEGRAL BASED AGGREGATION APPROACH TO SOFTWARE DEVELOPMENT RISK ASSESSMENT
- THE INFLUENCE OF CHECKLISTS AND ROLES ON SOFTWARE PRACTITIONER RISK PERCEPTION AND DECISION-MAKING
- SOFTWARE MAINTENANCE PROJECT DELAYS PREDICTION USING BAYESIAN NETWORKS
- USING A RISK-BASED APPROACH TO PROJECT SCHEDULING: A CASE ILLUSTRATION FROM SEMICONDUCTOR MANUFACTURING
- PLANNING EFFORT AS AN EFFECTIVE RISK MANAGEMENT TOOL
- TIME-LINE BASED MODEL FOR SOFTWARE PROJECT SCHEDULING WITH GENETIC ALGORITHMS
- MODELING SOFTWARE TESTING COSTS AND RISKS USING FUZZY LOGIC PARADIGM
- A HOLISTIC ARCHITECTURE ASSESSMENT METHOD FOR SOFTWARE PRODUCT LINES
- BID MANAGEMENT: A SYSTEMS ENGINEERING APPROACH.
- ASSET MANAGEMENT TECHNIQUES
- RESEARCH ON PROJECT SELECTION SYSTEM OF PRE-EVALUATION OF ENGINEERING DESIGN PROJECT BIDDING
- MODELING BUILDING PROJECTS AS A BASIS FOR CHANGE CONTROL
- RISKS IN OFFSHORE IT OUTSOURCING: A SERVICE PROVIDER PERSPECTIVE

- MANAGING CUSTOMER RELATIONSHIP MANAGEMENT PROJECTS: THE CASE OF A LARGE FRENCH TELECOMMUNICATIONS COMPANY
- HRM IN PROJECT GROUPS: THE EFFECT OF PROJECT DURATION ON TEAM DEVELOPMENT EFFECTIVENESS
- FROM COMPARATIVE RISK ASSESSMENT TO MULTI-CRITERIA DECISION ANALYSIS AND ADAPTIVE MANAGEMENT: RECENT DEVELOPMENTS AND APPLICATIONS
- MANAGING RISK IN SEMICONDUCTOR MANUFACTURING: A STOCHASTIC PREDICTIVE CONTROL APPROACH
- USING A RISK-BASED APPROACH TO PROJECT SCHEDULING: A CASE ILLUSTRATION FROM SEMICONDUCTOR MANUFACTURING
- LARGE ENGINEERING PROJECT RISK MANAGEMENT USING A BAYESIAN BELIEF NETWORK
- RISK MANAGEMENT IN ERP PROJECT INTRODUCTION: REVIEW OF THE LITERATURE
- RISK AND RISK MANAGEMENT IN SOFTWARE PROJECTS: A REASSESSMENT
- SCIENTIFIC RESEARCH ONTOLOGY TO SUPPORT SYSTEMATIC REVIEW IN SOFTWARE ENGINEERING
- A SYSTEMATIC LITERATURE REVIEW TO IDENTIFY AND CLASSIFY SOFTWARE REQUIREMENT ERRORS
- SOFTWARE PROJECT EFFORT ESTIMATION WITH VOTING RULES
- PROJECT-BASED TRANSPLANT MANAGEMENT AS A RESEARCH STATISTICAL SUPPORT
- RETHINKING PROJECT MANAGEMENT: RESEARCHING THE ACTUALITY OF PROJECTS
- PROBABILISTIC SIMULATION FOR DEVELOPING LIKELIHOOD DISTRIBUTION OF ENGINEERING PROJECT COST
- QUANTIFYING SCHEDULE RISK IN CONSTRUCTION PROJECTS USING BAYESIAN BELIEF NETWORKS
- A PRODUCT MANAGEMENT CHALLENGE: CREATING SOFTWARE PRODUCT VALUE THROUGH REQUIREMENTS SELECTION
- LIFE CYCLE ASSESSMENT OF WASTE MANAGEMENT SYSTEMS IN ITALIAN INDUSTRIAL AREAS: CASE STUDY OF 1ST MACROLOTTO OF PRATO
- RISK PROFILES AND DISTRIBUTED RISK ASSESSMENT
- TEACHING DISCIPLINED SOFTWARE DEVELOPMENT
- TOWARDS SECURITY REQUIREMENTS MANAGEMENT FOR SOFTWARE PRODUCT LINES: A SECURITY DOMAIN REQUIREMENTS ENGINEERING PROCESS
- SOFTWARE ENGINEERING USING RATIONALE
- SOFTWARE OPERATION TIME EVALUATION BASED ON MTM
- A FRAMEWORK TO SUPPORT THE EVALUATION, ADOPTION AND IMPROVEMENT OF AGILE METHODS IN PRACTICE
- STAFFING A SOFTWARE PROJECT: A CONSTRAINT SATISFACTION AND OPTIMIZATION-BASED APPROACH
- SCIENTIFIC RESEARCH ONTOLOGY TO SUPPORT SYSTEMATIC REVIEW IN SOFTWARE ENGINEERING
- EMPIRICAL STUDIES OF AGILE SOFTWARE DEVELOPMENT: A SYSTEMATIC REVIEW
- IN SEARCH OF OPPORTUNITY MANAGEMENT: IS THE RISK MANAGEMENT PROCESS ENOUGH?
- RELIABILITY ENGINEERING: OLD PROBLEMS AND NEW CHALLENGES
- MANAGING TESTING ACTIVITIES IN TELECOMMUNICATIONS: A CASE STUDY
- MODEL EXTENSION AND IMPROVEMENT FOR SIMULATOR-BASED SOFTWARE SAFETY ANALYSIS
- THE SIGNIFICANCE OF INFORMATION FRAMEWORKS IN INTEGRATED RISK ASSESSMENT AND MANAGEMENT
- AN ASPECT-ORIENTED METHODOLOGY FOR DESIGNING SECURE APPLICATIONS
- PRODUCT-PORTFOLIO ORDERING ANALYSIS WITH UPDATE INFORMATION IN THE TWO-ECHELON: RISK DECISION-MAKING MODEL
- PREPARING THE MIND FOR DYNAMIC MANAGEMENT
- BAYESIAN INFERENCE IN PROBABILISTIC RISK ASSESSMENT—THE CURRENT STATE OF THE ART

- STRUCTURED ANALOGIES FOR FORECASTING
- RISK ASSESSMENT IN PRACTICE: A REAL CASE STUDY
- IS RISK ANALYSIS A USEFUL TOOL FOR IMPROVING PROCESS SAFETY?
- CAN EXPERTS REALLY ASSESS FUTURE TECHNOLOGY SUCCESS? A NEURAL NETWORK AND BAYESIAN ANALYSIS OF EARLY STAGE TECHNOLOGY PROPOSALS
- BAYESIAN BELIEF NETWORKS AS A TOOL FOR EVIDENCE-BASED CONSERVATION MANAGEMENT
- INVESTIGATING THE EFFECT OF DATASET SIZE, METRICS SETS, AND FEATURE SELECTION TECHNIQUES ON SOFTWARE FAULT PREDICTION PROBLEM
- A HOLISTIC APPROACH TO MANAGING SOFTWARE CHANGE IMPACT
- RECENT DEVELOPMENTS IN LIFE CYCLE ASSESSMENT
- IMPACT OF CENSORING ON LEARNING BAYESIAN NETWORKS IN SURVIVAL MODELLING
- OPEN SOURCE SOFTWARE: AN INTRODUCTION
- FAULT TREE ANALYSIS AND FUZZY EXPERT SYSTEMS: EARLY WARNING AND EMERGENCY RESPONSE OF LANDFILL OPERATIONS
- NEW SPORTS MANAGEMENT SOFTWARE: A NEEDS ANALYSIS BY A PANEL OF SPANISH EXPERTS
- PROJECT RISK IDENTIFICATION AND ASSESSMENT SIMULTANEOUSLY USING MULTI-ATTRIBUTE GROUP DECISION MAKING TECHNIQUE
- A FUZZY APPROACH TO CONSTRUCTION PROJECT RISK ASSESSMENT
- RISK IDENTIFICATION AND ASSESSMENT FOR BUILD-OPERATE-TRANSFER PROJECTS: A FUZZY MULTI ATTRIBUTE DECISION MAKING MODEL
- USER ADVOCACY AND INFORMATION SYSTEM PROJECT PERFORMANCE
- TOWARDS A MULTI-DIMENSIONAL PROJECT PERFORMANCE MEASUREMENT SYSTEM
- DRIVING HEALTH IT IMPLEMENTATION SUCCESS: INSIGHTS FROM THE CHRIST HOSPITAL
- A STUDY OF PREPROJECT PLANNING AND PROJECT SUCCESS USING ANNS AND REGRESSION MODELS
- A STUDY OF ONTOLOGY-BASED RISK MANAGEMENT FRAMEWORK OF CONSTRUCTION PROJECTS THROUGH PROJECT LIFE CYCLE
- DOES RISK MANAGEMENT CONTRIBUTE TO IT PROJECT SUCCESS? A META-ANALYSIS OF EMPIRICAL EVIDENCE
- PROJECT PORTFOLIO MANAGEMENT: AN INTEGRATED METHOD FOR RESOURCE PLANNING AND SCHEDULING TO MINIMIZE PLANNING/SCHEDULING-DEPENDENT EXPENSES
- HRM IN PROJECT GROUPS: THE EFFECT OF PROJECT DURATION ON TEAM DEVELOPMENT EFFECTIVENESS
- THE TITANIC SUNK, SO WHAT? PROJECT MANAGER RESPONSE TO UNEXPECTED EVENTS
- EFFECT OF A VIRTUAL PROJECT TEAM ENVIRONMENT ON COMMUNICATION-RELATED PROJECT RISK
- RISK MANAGEMENT CAPABILITY MATURITY MODEL FOR COMPLEX PRODUCT SYSTEMS (COPS) PROJECTS
- THE RATIONAL CHOICE OF NOT APPLYING PROJECT RISK MANAGEMENT IN INFORMATION TECHNOLOGY PROJECTS
- QUANTIFYING IT ESTIMATION RISKS
- SCHEDULING PROJECTS WITH STOCHASTIC ACTIVITY DURATION TO MAXIMIZE EXPECTED NET PRESENT VALUE
- PREPARING SMALL SOFTWARE COMPANIES FOR TAILORED AGILE METHOD ADOPTION: MINIMALLY INTRUSIVE RISK ASSESSMENT
- THE PATHOGEN CONSTRUCT IN RISK ANALYSIS
- A PROJECT PORTFOLIO RISK-OPPORTUNITY IDENTIFICATION FRAMEWORK
- RISK FACTORS IN THE COLLABORATIVE DEVELOPMENT OF MANAGEMENT INFORMATION SYSTEMS FOR NIGERIAN UNIVERSITIES
- PROJECT RISK EVALUATION USING A FUZZY ANALYTIC HIERARCHY PROCESS: AN APPLICATION TO INFORMATION TECHNOLOGY PROJECTS

- PLANNING CUTS AUTOMATION PROJECT RISK.
- HOW TO MEASURE THE EFFECTIVENESS OF RISK MANAGEMENT IN ENGINEERING DESIGN PROJECTS? PRESENTATION OF RMPASS: A NEW METHOD FOR ASSESSING RISK MANAGEMENT PERFORMANCE AND THE IMPACT OF KNOWLEDGE MANAGEMENT—INCLUDING A FEW RESULTS
- CONSTRUCTION PROJECT RISK ASSESSMENT USING EXISTING DATABASE AND PROJECT-SPECIFIC INFORMATION
- RISK MANAGEMENT: LESSONS FROM SIX CONTINENTS
- MEASURING PROJECT RISK
- CTAN FOR RISK ASSESSMENTS USING MULTILEVEL STOCHASTIC NETWORKS
- COMPLEXITY ADDS RISK
- IT'S ALL IN THE TECHNIQUE!
- RISK MODELING OF DEPENDENCE AMONG PROJECT TASK DURATIONS
- GAO CALLS FOR BETTER TRACKING OF FEDERAL HIGH-RISK IT WORK
- YUCCA MOUNTAIN'S FUTURE EXAMINED
- LESSONS LEARNED: 12 STEPS TO PROJECT RISK REDUCTION
- MODELING UNCERTAINTIES INVOLVED WITH SOFTWARE DEVELOPMENT WITH A STOCHASTIC PETRI NET
- ORGANIZATION SECURITY METRICS: CAN ORGANIZATIONS PROTECT THEMSELVES?
- THE PROJECT ASSESSMENT BY SIMULATION TECHNIQUE
- PROBABILISTIC CONTROL OF PROJECT PERFORMANCE USING CONTROL LIMIT CURVES
- ECONOMY PUTS IT INTO PENNY-PINCHING MODE
- CASE STUDY IN COST-BASED RISK ASSESSMENT FOR SELECTING A STREAM RESTORATION DESIGN METHOD FOR A CHANNEL RELOCATION PROJECT
- PROCESS AND RISK ANALYSIS TO REDUCE ERRORS IN CLINICAL LABORATORIES
- MINIUMUM PAIN, MAXIMUM GAIN
- SUCCESS/FAILURE FACTORS AND PERFORMANCE MEASURES OF WEB-BASED CONSTRUCTION PROJECT MANAGEMENT SYSTEMS: PROFESSIONALS' VIEWPOINT
- PROBLEMATIC PRACTICE IN INTEGRATED IMPACT ASSESSMENT: THE ROLE OF CONSULTANTS AND PREDICTIVE COMPUTER MODELS IN BURYING UNCERTAINTY
- CAUTIOUS ANALYSIS OF PROJECT RISKS BY INTERVAL-VALUED INITIAL DATA
- WEIGHTING THE RISKS
- ELIMINATING THE RISKS TO STARTING UP YOUR PLANT RIGHT THE FIRST TIME
- HIGH PERFORMANCE MANAGEMENT
- SEARCHING FOR "UNKNOWN UNKNOWNS."
- IMPLEMENTING LARGE PROJECTS IN SOFTWARE ENGINEERING COURSES
- KNOWLEDGE SOURCING BEYOND BUZZ AND PIPELINES: EVIDENCE FROM THE VIENNA SOFTWARE SECTOR
- 25 TECHNOLOGIES THAT CHANGED THE DECADE
- SOFTWARE EXPORTS DEVELOPMENT IN COSTA RICA: POTENTIAL FOR POLICY REFORMS
- COMPUTERS AND SOFTWARE BEAR TAX BREAKS AND PITFALLS
- USE OF WRITING WITH SYMBOLS 2000 SOFTWARE TO FACILITATE EMERGENT LITERACY DEVELOPMENT
- AGILE METHODS IN EUROPEAN EMBEDDED SOFTWARE DEVELOPMENT ORGANISATIONS: A SURVEY ON THE ACTUAL USE AND USEFULNESS OF EXTREME PROGRAMMING AND SCRUM
- LESSONS FROM THE DEVELOPMENT OF COMPUTER BRAILLE CODE
- INFORMATION TECHNOLOGY (IT) SYSTEM USERS MUST BE ALLOWED TO DECIDE ON THE FUTURE DIRECTION OF MAJOR NATIONAL IT INITIATIVES. BUT THE TASK OF REDISTRIBUTING POWER EQUALLY AMONGST STAKEHOLDERS WILL NOT BE AN EASY ONE
- INTEGRATION OF SAFETY ANALYSIS IN MODEL-DRIVEN SOFTWARE DEVELOPMENT
- INTEGRATION OF SAFETY ANALYSIS IN MODEL-DRIVEN SOFTWARE DEVELOPMENT
- AN XML BASED METHODOLOGY TO MODEL AND USE SCENARIOS IN THE SOFTWARE DEVELOPMENT PROCESS

- USING COTS COMPONENTS IN SOFTWARE DEVELOPMENT
- TOWARDS A PHILOSOPHY OF SOFTWARE DEVELOPMENT: 40 YEARS AFTER THE BIRTH OF SOFTWARE ENGINEERING
- A NOVEL APPROACH OF REQUIREMENT GATHERING AND ANALYSIS FOR AGENT ORIENTED SOFTWARE ENGINEERING (AOSE)
- THE APPLICATION-BASED DOMAIN ANALYSIS APPROACH AND ITS OBJECT-PROCESS METHODOLOGY IMPLEMENTATION
- IMAGINING INDIA: SOFTWARE AND THE IDEOLOGY OF LIBERALISATION
- SOFTWARE REUSABILITY MODEL FOR PROCEDURE BASED DOMAIN-SPECIFIC SOFTWARE COMPONENTS
- FIVE TRENDS CHANGING THE FACE OF BI
- CHANGE MANAGEMENT AND SOFTWARE REUSE SUPPORTIVE 'GENETIC INFORMATION SYSTEM DEVELOPMENT AND MAINTENANCE' MODEL
- A CASE STUDY OF THREE SOFTWARE PROJECTS: CAN SOFTWARE DEVELOPERS ANTICIPATE THE USABILITY PROBLEMS IN THEIR SOFTWARE?
- MANAGING REQUIREMENTS INTER-DEPENDENCY FOR SOFTWARE PRODUCT LINE DERIVATION
- RISK ASSESSMENT
- BUILDING A FRAMEWORK TO MEASURE AND MINIMIZE INFORMATION RISKS
- A LIGHTWEIGHT TECHNIQUE FOR ASSESSING RISKS IN REQUIREMENTS ANALYSIS
- CONTEMPLATING RISK ASSESSMENT: A CRITIQUE OF NRC (1983, 1996)
- RISK ASSESSMENT OF OCCUPATIONAL STRESS: EXTENSIONS OF THE CLARKE AND COOPER APPROACH
- RELATIVE RELIABILITY RISK ASSESSMENT APPLIED TO ORIGINAL DESIGNS DURING CONCEPTUAL DESIGN PHASE
- ANTICIPATION OF RISKS AND BENEFITS OF EMERGING TECHNOLOGIES: A
 PROSPECTIVE ANALYSIS METHOD
- THE MARICOPA INTEGRATED RISK ASSESSMENT PROJECT: A NEW WAY OF LOOKING AT RISK
- SPOTLIGHT BEST PRACTICES
- FINESSING ON-DEMAND SOFTWARE DEALS
- CONSTRUCTION PROJECT RISK ASSESSMENT USING EXISTING DATABASE AND PROJECT-SPECIFIC INFORMATION
- AN ASSESSMENT OF INTEGRATED RISK ASSESSMENT
- A LIGHTWEIGHT TECHNIQUE FOR ASSESSING RISKS IN REQUIREMENTS ANALYSIS
- EVOLVING INFORMATION IN AN "EVIDENCE-BASED" WORLD: THEORETICAL CONSIDERATIONS
- ONLINE STRATEGIC INTELLIGENCE
- SWIMMING WITH THE SHARKS: PERSPECTIVES ON PROFESSIONAL RISK TAKING
- TECH FIRMS RISK 'CATASTROPHIC' BREACHES OF DATA SECURITY
- PROJECT-MANAGEMENT TOOLS FOR LIBRARIES: A PLANNING AND IMPLEMENTATION MODEL USING MICROSOFT PROJECT 2000
- WHAT LIBRARIANS CAN LEARN FROM GAMERS
- STUDY ON THE RISK MANAGEMENT MECHANISM OF THE ENGINEERING PROJECT DURING DECISION-MAKING STAGE
- MODELLING PROJECT TRADE-OFF USING BAYESIAN NETWORKS
- PROJECT CONTROL AND RISK MANAGEMENT FOR PROJECT SUCCESS: A SOUTH AFRICAN CASE STUDY
- THE APPLICATION OF FAULT TREE ANALYSIS IN SOFTWARE PROJECT RISK MANAGEMENT
- RESEARCH ON RISK MANAGEMENT OF COMMUNICATION PROJECTS BASED ON AHP
- PROJECT RISK MANAGEMENT BASED ON A.D.HALL THREE-DIMENSION STRUCTURE ACTIVE-MATRIX THEORY
- PROJECT RISK PATTERN BASED ON PATTERN ANALYSIS
- INVESTIGATION OF GREY SYSTEM THEORY IN ENGINEERING PROJECT RISK MANAGEMENT
- STUDY ON PROJECT RISK MANAGEMENT IN CHINA

- FUZZY GROUP DECISION MAKING: A CASE USING FTOPSIS IN MEGA PROJECT RISK IDENTIFICATION AND ANALYSIS CONCURRENTLY
- A STUDY OF SOFTWARE DEVELOPMENT PROJECT RISK MANAGEMENT
- STUDY ON PROJECT RISK MANAGEMENT INFORMATION SYSTEM BASED ON PROGRESS SCHEDULE
- NETWORK STRUCTURE TO TREE STRUCTURE: A NEW METHOD OF PROJECT RISK MANAGEMENT DECISION
- MODEL IDENTIFICATION OF RISK MANAGEMENT SYSTEM
- TEAMWORK PATTERN OF PROJECT RISK MANAGEMENT BASED ON KNOWLEDGE REUSE
- LARGE ENGINEERING PROJECT RISK MANAGEMENT USING A BAYESIAN BELIEF NETWORK
- SOFTWARE PROJECT RISK ASSESSMENT BASED ON FUZZY LINGUISTIC MULTIPLE ATTRIBUTE DECISION MAKING
- THE APPLICATION OF RISK MATRIX TO SOFTWARE PROJECT RISK MANAGEMENT
- A CASE STUDY FOR THE IMPLEMENTATION OF AN AGILE RISK MANAGEMENT PROCESS IN MULTIPLE PROJECTS ENVIRONMENTS
- RESEARCH ON MULTI-RISK ELEMENT TRANSMISSION MODEL OF ENTERPRISE PROJECT CHAIN
- PROJECT, SYSTEMS AND RISK MANAGEMENT PROCESSES INTERACTIONS
- PROJECT MANAGEMENT USING RISK IDENTIFICATION ARCHITECTURE PATTERN (RIAP) MODEL: A CASE STUDY ON A WEB-BASED APPLICATION
- THE RISKS OF RISK MANAGEMENT
- SOFTWARE PROJECT RISK MANAGEMENT MODELING WITH NEURAL NETWORK AND SUPPORT VECTOR MACHINE APPROACHES
- COST AT RISK IN R&D PROJECT RISK MANAGEMENT
- THE INFLUENCE OF EXPERIENCE AND INFORMATION SEARCH STYLES ON PROJECT RISK IDENTIFICATION PERFORMANCE
- RISK AND RISK MANAGEMENT IN SOFTWARE PROJECTS: A REASSESSMENT
- MONITORING RISK RESPONSE ACTIONS FOR EFFECTIVE PROJECT RISK MANAGEMENT
- RISK MANAGEMENT APPLIED TO PROJECTS, PROGRAMS, AND PORTFOLIOS
- A REVIEW OF TECHNIQUES FOR RISK MANAGEMENT IN PROJECTS
- SUPPORTING DECISION MAKING IN RISK MANAGEMENT THROUGH AN EVIDENCE-BASED INFORMATION SYSTEMS PROJECT RISK CHECKLIST
- RISK MANAGEMENT IN A MULTI-PROJECT ENVIRONMENT: AN APPROACH TO MANAGE PORTFOLIO RISKS
- THE EFFECT OF INTERVENING CONDITIONS ON THE MANAGEMENT OF PROJECT RISK
- IRMAS DEVELOPMENT OF A RISK MANAGEMENT TOOL FOR COLLABORATIVE MULTI-SITE, MULTI-PARTNER NEW PRODUCT DEVELOPMENT PROJECTS
- CAN A PROJECT CHAMPION BIAS PROJECT SELECTION AND, IF SO, HOW CAN WE AVOID IT?
- PROJECT MANAGEMENT QUALITY AND THE VALUE OF FLEXIBLE STRATEGIES
- SUBCONTRACTORS' BUSINESS RELATIONSHIPS AS RISK SOURCES IN PROJECT NETWORKS
- COMPETENCE-BASED RISK PERCEPTION IN THE PROJECT BUSINESS
- FACING KNOWLEDGE EVOLUTION IN SPACE PROJECT: A MULTI-VIEWPOINT APPROACH
- EXISTING AND FUTURE STANDARDS FOR EVENT-DRIVEN BUSINESS PROCESS MANAGEMENT
- THE ROLE OF SOFTWARE PROCESS SIMULATION MODELING IN SOFTWARE RISK MANAGEMENT: A SYSTEMATIC REVIEW
- A VISUALIZATION TOOL FOR RISK ASSESSMENT IN SOFTWARE DEVELOPMENT
- SOFTWARE RISK ASSESSMENT AND ESTIMATION MODEL
- A REVIEW OF SOFTWARE RISK MANAGEMENT FOR SELECTION OF BEST TOOLS AND TECHNIQUES
- ASSESSING SOFTWARE RISK MANAGEMENT PRACTICES IN A SMALL SCALE PROJECT

- SOFTWARE RISK IDENTIFICATION AND MITIGATION IN INCREMENTAL MODEL
- A RISK CONTROL OPTIMIZATION MODEL FOR SOFTWARE PROJECT
- SOFTWARE RISK MANAGEMENT BARRIERS: AN EMPIRICAL STUDY
- AN APPROACH TO FACILITATE SOFTWARE RISK IDENTIFICATION
- THE INFLUENCE OF CHECKLISTS AND ROLES ON SOFTWARE PRACTITIONER RISK PERCEPTION AND DECISION-MAKING
- A NEURAL NETWORKS APPROACH FOR SOFTWARE RISK ANALYSIS
- RESEARCH ON OPTIMIZING SOFTWARE PROJECT PROCESS BASED RISK CONTROL METHOD
- RISK MANAGEMENT THROUGH ARCHITECTURE DESIGN
- UNDERSTANDING THE EFFECTS OF REQUIREMENTS VOLATILITY IN SOFTWARE ENGINEERING BY USING ANALYTICAL MODELING AND SOFTWARE PROCESS SIMULATION
- REDUCING SOFTWARE REQUIREMENT PERCEPTION GAPS THROUGH COORDINATION MECHANISMS
- SOFTWARE PRODUCT INTEGRATION: A CASE STUDY-BASED SYNTHESIS OF REFERENCE MODELS
- EMPIRICAL VALIDATION OF THE CLASSIC CHANGE CURVE ON A SOFTWARE TECHNOLOGY CHANGE PROJECT
- INVESTIGATING THE RELATIONSHIP BETWEEN SCHEDULES AND KNOWLEDGE TRANSFER IN SOFTWARE TESTING
- MULTIDIMENSIONAL SOFTWARE MONITORING APPLIED TO ERP
- IMPROVING PROCESS DECISIONS IN COTS-BASED DEVELOPMENT VIA RISK-BASED PRIORITIZATION

APÊNDICE C

RELAÇÃO DE FONTES-PRIMÁRIAS PRÉ-SELECIONADAS ALEATORIAMENTE ANALISADAS NA REVISÃO SISTEMÁTICA (REPLICAÇÕES, EDITORIAIS E REVISÕES DE LIVROS INCLUSOS)

- DELIBERATE IGNORANCE IN PROJECT RISK MANAGEMENT
- EVOLUTION OF PROJECT MANAGEMENT RESEARCH AS EVIDENCED BY PAPERS PUBLISHED IN THE INTERNATIONAL JOURNAL OF PROJECT MANAGEMENT
- MANAGING RISKS IN MEGA DEFENSE ACQUISITION PROJECTS: PERFORMANCE, POLICY, AND OPPORTUNITIES
- PROJECT MANAGEMENT AND NATIONAL CULTURE: A DUTCH-FRENCH CASE STUDY
- PROJECT MANAGEMENT DEPLOYMENT: THE ROLE OF CULTURAL FACTORS
- PROJECT MANAGEMENT DEPLOYMENT: THE ROLE OF CULTURAL FACTORS
- SIGNIFICANCE OF PROJECT MANAGEMENT PERFORMANCE ASSESSMENT (PMPA) MODEL
- A COMPREHENSIVE MODEL FOR SELECTING INFORMATION SYSTEM PROJECT UNDER FUZZY ENVIRONMENT
- CRITICAL CHAIN AND RISK ANALYSIS APPLIED TO HIGH-RISK INDUSTRY MAINTENANCE: A CASE STUDY
- PROJECT MANAGEMENT STANDARDS DIFFUSION AND APPLICATION IN GERMANY AND SWITZERLAND
- THE P-FORM ORGANIZATION AND THE DYNAMICS OF PROJECT COMPETENCE: PROJECT EPOCHS IN ASEA/ABB, 1950–2000
- A MULTIPLE CRITERIA DECISION MODEL FOR ASSIGNING PRIORITIES TO ACTIVITIES IN PROJECT MANAGEMENT
- FOUNDATIONS OF PROGRAM MANAGEMENT: A BIBLIOMETRIC VIEW
- EDITORIAL: CHANGE MANAGEMENT AND PROJECTS
- EDITORIAL: ACHIEVING IT PROJECT SUCCESS THROUGH CONTROL, MEASUREMENT, MANAGING EXPECTATIONS, AND TOP MANAGEMENT SUPPORT
- AN EXPERIMENTAL INVESTIGATION OF FACTORS INFLUENCING PERCEIVED CONTROL OVER A FAILING IT PROJECT
- MANAGING PUBLIC-PRIVATE MEGAPROJECTS: PARADOXES, COMPLEXITY, AND PROJECT DESIGN
- EDITORIAL: PROJECTS IN INNOVATION, INNOVATION IN PROJECTS SELECTED PAPERS FROM THE IRNOP VIII CONFERENCE
- EXPLORATION AND PROJECT MANAGEMENT
- MANAGING ROBUST DEVELOPMENT PROCESS FOR HIGH-TECH STARTUPS THROUGH MULTI-PROJECT LEARNING: THE CASE OF TWO EUROPEAN START-UPS
- THE PROJECT MANAGEMENT OFFICE AS AN ORGANISATIONAL INNOVATION
- INNOVATION IN PROJECT MANAGEMENT: VOICES OF RESEARCHERS
- ASSESSING RISK AND UNCERTAINTY INHERENT IN CHINESE HIGHWAY PROJECTS USING AHP
- ASSESSING RISK AND UNCERTAINTY INHERENT IN CHINESE HIGHWAY PROJECTS USING AHP
- PROJECT RISK MANAGEMENT PRACTICE: THE CASE OF A SOUTH AFRICAN UTILITY COMPANY

- PROJECT RISK MANAGEMENT PRACTICE: THE CASE OF A SOUTH AFRICAN UTILITY COMPANY
- PROJECT MANAGEMENT OF UNEXPECTED EVENTS
- THE SUBLIMINAL CHARACTERISTICS OF PROJECT MANAGERS: AN EXPLORATORY STUDY OF OPTIMISM OVERCOMING CHALLENGE IN THE PROJECT MANAGEMENT WORK ENVIRONMENT
- 'CULTURAL' DIFFERENCES IN PROJECT RISK PERCEPTION: AN EMPIRICAL COMPARISON OF CHINA AND CANADA
- A REDEFINITION OF THE PROJECT RISK PROCESS: USING VULNERABILITY TO OPEN UP THE EVENT-CONSEQUENCE LINK
- MANAGERIAL PERCEPTIONS OF POLITICAL RISK IN INTERNATIONAL PROJECTS
- BOOK REVIEW: D. VAN WELL-STAM, F. LINDENAAR, S. VAN KINDEREN, B. VAN DEN BUNT, PROJECT RISK MANAGEMENT: AN ESSENTIAL TOOL FOR MANAGING AND CONTROLLING PROJECTS, KOGAN PAGE, LONDON, 2004, SOFT BACK, 180 PP, £19.95, ISBN 0-7494-4275-1
- TRIGGERS FOR A FLEXIBLE APPROACH TO PROJECT MANAGEMENT WITHIN UK FINANCIAL SERVICES
- OPTIMIZING THE DEVELOPMENT SCHEDULE OF RESORT PROJECTS BY INTEGRATING SIMULATION AND GENETIC ALGORITHM
- BOOK REVIEW: PETER J. EDWARDS, PAUL A. BOWEN, RISK MANAGEMENT IN PROJECT ORGANISATIONS, UNIVERSITY OF NEW SOUTH WALES PRESS, SYDNEY, 2005
- AN EPISTEMOLOGICAL EVALUATION OF RESEARCH INTO PROJECTS AND THEIR MANAGEMENT: METHODOLOGICAL ISSUES
- A GAME THEORY APPROACH FOR THE ALLOCATION OF RISKS IN TRANSPORT PUBLIC PRIVATE PARTNERSHIPS
- MANAGING VALUE AS A MANAGEMENT STYLE FOR PROJECTS
- EDITORIAL: WHAT DO WE WANT FROM A THEORY OF PROJECT MANAGEMENT? A RESPONSE TO RODNEY TURNER
- PERSPECTIVES ON PROJECT MANAGEMENT
- THE IMPACT OF PURITAN IDEOLOGY ON ASPECTS OF PROJECT MANAGEMENT
- LEARNING WITHIN PROJECT PRACTICE: COGNITIVE STYLES EXPOSED
- THE IMPORTANCE OF CONTEXT IN PROGRAMME MANAGEMENT: AN EMPIRICAL REVIEW OF PROGRAMME PRACTICES
- THE IMPORTANCE OF CONTEXT IN PROGRAMME MANAGEMENT: AN EMPIRICAL REVIEW OF PROGRAMME PRACTICES
- EDITORIAL: SPECIAL ISSUE ON RETHINKING PROJECT MANAGEMENT (EPSRC NETWORK 2004–2006)
- THE IMPORTANCE OF 'PROCESS' IN RETHINKING PROJECT MANAGEMENT: THE STORY OF A UK GOVERNMENT-FUNDED RESEARCH NETWORK
- EDITORIAL: GOVERNANCE ISSUES IN PUBLIC PRIVATE PARTNERSHIPS
- GOOD PROJECT GOVERNANCE FOR PROPER RISK ALLOCATION IN PUBLIC-PRIVATE PARTNERSHIPS IN INDONESIA
- THE ROLE OF INTUITION AND IMPROVISATION IN PROJECT MANAGEMENT
- A TWO-WAY INFLUENCE BETWEEN BUSINESS STRATEGY AND PROJECT MANAGEMENT
- RISK AVOIDANCE IN BIDDING FOR SOFTWARE PROJECTS BASED ON LIFE CYCLE MANAGEMENT THEORY
- THE EFFECTS OF THE FORMAT OF SOFTWARE PROJECT BIDDING PROCESSES
- PROJECT OVERLOAD: AN EXPLORATORY STUDY OF WORK AND MANAGEMENT IN MULTI-PROJECT SETTINGS
- KEY POINTS OF CONTENTION IN FRAMING ASSUMPTIONS FOR RISK AND UNCERTAINTY MANAGEMENT
- CRITICAL DETERMINANTS OF PROJECT COORDINATION
- A LIFE CYCLE EVALUATION OF CHANGE IN AN ENGINEERING ORGANIZATION: A CASE STUDY
- DEFINING SUCCESS FOR SOFTWARE PROJECTS: AN EXPLORATORY REVELATION

- DATA MINING MODEL FOR IDENTIFYING PROJECT PROFITABILITY VARIABLES
- PREDICTING PROJECT PERFORMANCE THROUGH NEURAL NETWORKS
- PROJECT MANAGEMENT EFFECTIVENESS IN PROJECT-ORIENTED BUSINESS ORGANIZATIONS
- UNCOVERING THE TRENDS IN PROJECT MANAGEMENT: JOURNAL EMPHASES OVER THE LAST 10 YEARS
- INTERPRETING AN ERP-IMPLEMENTATION PROJECT FROM A STAKEHOLDER PERSPECTIVE
- MANAGEMENT OF FLEXIBILITY IN PROJECTS
- UNDERSTANDING INTERNALLY GENERATED RISKS IN PROJECTS
- INTERVENING CONDITIONS ON THE MANAGEMENT OF PROJECT RISK: DEALING WITH UNCERTAINTY IN INFORMATION TECHNOLOGY PROJECTS
- CLIENT VERSUS CONTRACTOR PERSPECTIVES ON PROJECT SUCCESS CRITERIA
- THE ROLE OF PROJECT MANAGEMENT IN UNIVERSITY COMPUTING RESOURCE DEPARTMENTS
- MANAGING TEAM ENTREES AND WITHDRAWALS DURING THE PROJECT LIFE CYCLE
- MANAGING PROJECT EXPECTATIONS IN HUMAN SERVICES INFORMATION SYSTEMS IMPLEMENTATIONS: THE CASE OF HOMELESS MANAGEMENT INFORMATION SYSTEMS
- THE IMPACT OF PROJECT PORTFOLIO MANAGEMENT ON INFORMATION TECHNOLOGY PROJECTS
- DECISION SUPPORT SYSTEM FOR SELECTING THE PROPER PROJECT DELIVERY METHOD USING ANALYTICAL HIERARCHY PROCESS (AHP)
- PREDICTING SOFTWARE DEFECTS IN VARYING DEVELOPMENT LIFECYCLES USING BAYESIAN NETS
- COLLABORATION IN SOFTWARE ENGINEERING: A ROADMAP
- DISTRIBUTED SCRUM: AGILE PROJECT MANAGEMENT WITH OUTSOURCED DEVELOPMENT TEAMS
- USING THE INCREMENTAL COMMITMENT MODEL TO INTEGRATE SYSTEM ACQUISITION, SYSTEMS ENGINEERING, AND SOFTWARE ENGINEERING
- SOFTWARE PROJECT ECONOMICS: A ROADMAP
- PROJECT DATA INCORPORATING QUALITATIVE FACTS FOR IMPROVED SOFTWARE DEFECT PREDICTION
- SOFTWARE DEVELOPMENT RISK AND PROJECT PERFORMANCE MEASUREMENT: EVIDENCE IN KOREA
- AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY FOR SOFTWARE PROJECT ESTIMATION AND MEASUREMENT SYSTEMS
- AN INTELLIGENT EARLY WARNING SYSTEM FOR SOFTWARE QUALITY IMPROVEMENT AND PROJECT MANAGEMENT
- OPTION-BASED RISK MANAGEMENT: A FIELD STUDY OF SEQUENTIAL IT INVESTMENT DECISIONS
- STATE OF THE PRACTICE: AN EXPLORATORY ANALYSIS OF SCHEDULE ESTIMATION AND SOFTWARE PROJECT SUCCESS PREDICTION
- EVALUATING SOFTWARE PROJECT PORTFOLIO RISKS
- SOFTWARE PROJECT MANAGEMENT WITH GAS
- MOBILIZATION OF SOFTWARE DEVELOPERS: THE FREE SOFTWARE MOVEMENT
- RATIONALE MANAGEMENT IN SOFTWARE ENGINEERING
- VIGILNET: AN INTEGRATED SENSOR NETWORK SYSTEM FOR ENERGY-EFFICIENT SURVEILLANCE
- EXPERIENCES BUILDING PLANETLAB
- A FRESH LOOK AT THE RELIABILITY OF LONG-TERM DIGITAL STORAGE
- A SURVEY OF DYNAMIC SPECTRUM ACCESS
- HOW BODIES MATTER: FIVE THEMES FOR INTERACTION DESIGN
- YALE: RAPID PROTOTYPING FOR COMPLEX DATA MINING TASKS
- HYPERMEDIA SUPPORT FOR ARGUMENTATION-BASED RATIONALE
- SOFTWARE SELF-HEALING USING COLLABORATIVE APPLICATION COMMUNITIES

- MANAGING LARGE-SCALE WORKFLOW EXECUTION FROM RESOURCE PROVISIONING TO PROVENANCE TRACKING: THE CYBERSHAKE EXAMPLE
- FLIGHT DATA RECORDER: MONITORING PERSISTENT-STATE INTERACTIONS TO IMPROVE SYSTEMS MANAGEMENT
- BUMP IN THE ETHER: A FRAMEWORK FOR SECURING SENSITIVE USER INPUT
- STAYING OPEN TO INTERPRETATION: ENGAGING MULTIPLE MEANINGS IN DESIGN AND EVALUATION
- M.: MYONTOLOGY: THE MARRIAGE OF ONTOLOGY ENGINEERING AND COLLECTIVE INTELLIGENCE
- AGENT-BASED PARTICIPATORY SIMULATIONS: MERGING MULTI-AGENT; SYSTEMS AND ROLE-PLAYING GAMES
- THE BLUEPRINT OF A REFERENCE CRITICAL INFORMATION INFRASTRUCTURE ARCHITECTURE
- MODELLING RISK AND IDENTIFYING COUNTERMEASURES IN ORGANIZATIONS
- IDENTIFYING REFACTORINGS FROM SOURCECODE CHANGES
- METAMODELING THE REQUIREMENTS OF WEB SYSTEMS
- A VIEW OF 20TH AND 21ST CENTURY SOFTWARE ENGINEERING
- CHALLENGES IN VISUAL DATA ANALYSIS
- MDI A RULE-BASED MULTI-DOCUMENT AND TOOL INTEGRATION APPROACH
- SOFTWARE ENGINEERING FOR AUTOMOTIVE SYSTEMS: A ROADMAP
- WHAT ARE EMERGENT PROPERTIES AND HOW DO THEY AFFECT THE ENGINEERING OF COMPLEX SYSTEMS? RELIABILITY ENGINEERING AND SYSTEM SAFETY
- HOW DEVELOPERS COPY
- APPLYING FEEDBACK CONTROL TO A REPLICA MANAGEMENT SYSTEM
- THE IMPACT OF AN AGILE METHODOLOGY ON THE WELL BEING OF DEVELOPMENT TEAMS
- DESIGNING COOPERATIVE IS: EXPLORING AND EVALUATING ALTERNATIVES
- A SOCIO-TECHNICAL FRAMEWORK FOR SUPPORTING PROGRAMMERS
- USING A FORMAL METHOD TO MODEL SOFTWARE DESIGN IN XP PROJECTS
- THE MAKING OF TRIGGER AND THE AGILE ENGINEERING OF ARTIST-SCIENTIST COLLABORATION
- MANAGING LARGE SCALE DATA FOR EARTHQUAKE SIMULATIONS
- EXPERIENCES TRACKING AGILE PROJECTS: AN EMPIRICAL STUDY
- URBANSIM: USING SIMULATION TO INFORM PUBLIC DELIBERATION AND DECISION MAKING
- CREATIVITY VERSUS THE PERCEPTION OF CREATIVITY IN COMPUTATIONAL SYSTEMS
- SIMSE: A SOFTWARE ENGINEERING SIMULATION ENVIRONMENT FOR SOFTWARE PROCESS EDUCATION
- A COMPARISON OF UPPER ONTOLOGIES
- PASTWATCH: A DISTRIBUTED VERSION CONTROL SYSTEM
- COMMON SENSE REASONING FROM CYC TO INTELLIGENT ASSISTANT
- A DISTRIBUTED TABLING ALGORITHM FOR RULE BASED POLICY SYSTEMS
- DRIVING AND MANAGING ARCHITECTURAL DECISIONS WITH ASPECTS
- STATIC VERIFICATION OF UML MODEL CONSISTENCY
- REASONING SUPPORT FOR ONTOLOGY DESIGN
- A POSTERIORI COMPLIANCE CONTROL
- APPLYING REAL OPTIONS THINKING TO INFORMATION SECURITY IN NETWORKED ORGANIZATIONS
- MODELING SAFETY CASE EVOLUTION EXAMPLES FROM THE AIR TRAFFIC MANAGEMENT DOMAIN
- SADAAM: SOFTWARE AGENT DEVELOPMENT AN AGILE METHODOLOGY. LADS/DURHAM AGENTS
- EMPOWERING SOFTWARE MAINTAINERS WITH SEMANTIC WEB TECHNOLOGIES
- EXPERIENCES WITH MARMOSET: DESIGNING AND USING AN ADVANCED SUBMISSION AND TESTING SYSTEM FOR PROGRAMMING COURSES

- FAURA. A DYNAMIC WORKFLOW MANAGEMENT SYSTEM FOR COORDINATION OF COOPERATIVE ACTIVITIES
- INTEGRATING SECURITY AND USABILITY INTO THE REQUIREMENTS AND DESIGN PROCESS
- DESIGN OF A MODELLING LANGUAGE FOR INFORMATION SYSTEM SECURITY RISK MANAGEMENT
- A QUALITATIVE INVESTIGATION OF UML MODELING CONVENTIONS
- AN APPROACH TO IMPROVING PARAMETRIC ESTIMATION MODELS IN THE CASE OF VIOLATION OF ASSUMPTIONS BASED UPON RISK ANALYSIS
- ADOPTING CURVILINEAR COMPONENT ANALYSIS TO IMPROVE SOFTWARE COST ESTIMATION ACCURACY. MODEL, APPLICATION STRATEGY, AND AN EXPERIMENTAL VERIFICATION
- LARGE SCALE DETECTION OF IRREGULARITIES IN ACCOUNTING DATA
- MOAST AND USARSIM A COMBINED FRAMEWORK FOR THE DEVELOPMENT AND TESTING OF AUTONOMOUS SYSTEMS
- INFORMATION GOVERNANCE IN NHS'S NPFIT: A CASE FOR POLICY SPECIFICATION
- MOTIVES FOR ESTABLISHING SHARED SERVICE CENTERS IN PUBLIC ADMINISTRATIONS
- COLLABORATIVE MULTIDISCIPLINARY DESIGN IN VIRTUAL ENVIRONMENTS
- THE IMPORTANCE OF IS STAKEHOLDER PERSPECTIVES AND PERCEPTIONS TO REQUIREMENTS NEGOTIATION
- FORMAL ANALYSIS OF SOME SECURE PROCEDURES FOR CERTIFICATE DELIVERY
- PERSONAL RIGHTS MANAGEMENT: TAMING CAMERAPHONES FOR INDIVIDUAL PRIVACY MANAGEMENT
- A FULLY VIRTUAL MULTI-NODE 1553 BUS COMPUTER
- APPROACHES FOR ENSURING SECURITY AND PRIVACY ON UNPLANNED UBIQUITOUS COMPUTING INTERACTIONS
- A PERVASIVE COMPUTING SYSTEM FOR THE OPERATING ROOM OF THE FUTURE
- DIRECT ANONYMOUS ATTESTATION (DAA): ENSURING PRIVACY WITH CORRUPT ADMINISTRATORS
- PROJECT ENSAYO: A VIRTUAL EMERGENCY OPERATIONS CENTER FOR DISASTER MANAGEMENT RESEARCH, TRAINING, AND DISCOVERY
- 3D FOREST STRUCTURE ANALYSIS FROM OPTICAL AND LIDAR DATA
- TOWARDS DISCOVERING DATA CENTER GENOME USING SENSOR NETS
- SAFETY GUIDELINES FOR CONDUCTING MAGNETIC RESONANCE IMAGING (MRI) EXPERIMENTS INVOLVING HUMAN SUBJECTS
- RESEARCH STATEMENT
- CAPITAL PROGRAMMING GUIDE
- SIMULATOR FOR SOFTWARE MAINTAINABILITY
- STUDY 237: DEVELOPMENT AND USE OF QSARS FOR REGULATORY SCREENING AND PRIORITIZATION OF CHEMICALS: EVALUATION OF ENVIRONMENTAL AND TOXICOLOGICAL
- CRITICAL REVIEW OF STOCHASTIC SIMULATION LITERATURE AND APPLICATIONS FOR HEALTH ACTUARIES
- IMAGE-GUIDED SURGERY AND MEDICAL ROBOTICS IN THE CRANIAL AREA
- COMPUTER SYSTEM SAFETY AND HAZARD ANALYSIS
- USING SOLARIS™ OPERATING SYSTEM SECURITY TO ADDRESS PAYMENT CARD INDUSTRY (PCI) DSS COMPLIANCE: A SYSTEMIC APPROACH TO SECURITY
- FINAL REPORT FOR NCHRP REPORT 574: GUIDANCE FOR COST ESTIMATION AND MANAGEMENT FOR HIGHWAY PROJECTS DURING PLANNING, PROGRAMMING, AND PRECONSTRUCTION
- DELIBERATE IGNORANCE IN PROJECT RISK MANAGEMENT
- THE RATIONAL CHOICE OF NOT APPLYING PROJECT RISK MANAGEMENT IN INFORMATION TECHNOLOGY PROJECTS
- MONITORING RISK RESPONSE ACTIONS FOR EFFECTIVE PROJECT RISK MANAGEMENT
- A FUZZY APPROACH TO CONSTRUCTION PROJECT RISK ASSESSMENT

- PROJECT RISK IDENTIFICATION AND ASSESSMENT SIMULTANEOUSLY USING MULTI-ATTRIBUTE GROUP DECISION MAKING TECHNIQUE
- PROJECT RISK EVALUATION USING A FUZZY ANALYTIC HIERARCHY PROCESS: AN APPLICATION TO INFORMATION TECHNOLOGY PROJECTS
- A STUDY OF ONTOLOGY-BASED RISK MANAGEMENT FRAMEWORK OF CONSTRUCTION PROJECTS THROUGH PROJECT LIFE CYCLE
- DOES RISK MANAGEMENT CONTRIBUTE TO IT PROJECT SUCCESS? A META-ANALYSIS OF EMPIRICAL EVIDENCE
- RISK MANAGEMENT CAPABILITY MATURITY MODEL FOR COMPLEX PRODUCT SYSTEMS (COPS) PROJECTS
- MONITORING RISK RESPONSE ACTIONS FOR EFFECTIVE PROJECT RISK MANAGEMENT
- EFFECT OF A VIRTUAL PROJECT TEAM ENVIRONMENT ON COMMUNICATION-RELATED PROJECT RISK
- AN EMPIRICAL ANALYSIS OF RISK COMPONENTS AND PERFORMANCE ON SOFTWARE PROJECTS
- RISK AVOIDANCE IN BIDDING FOR SOFTWARE PROJECTS BASED ON LIFE CYCLE MANAGEMENT THEORY
- SOFTWARE DEVELOPMENT RISK AND PROJECT PERFORMANCE MEASUREMENT: EVIDENCE IN KOREA
- EXPLORING THE RELATIONSHIP BETWEEN SOFTWARE PROJECT DURATION AND RISK EXPOSURE: A CLUSTER ANALYSIS
- RISK AND RISK MANAGEMENT IN SOFTWARE PROJECTS: A REASSESSMENT
- A COMPARATIVE STUDY OF IMPORTANT RISK FACTORS INVOLVED IN OFFSHORE AND DOMESTIC OUTSOURCING OF SOFTWARE DEVELOPMENT PROJECTS: A TWO-PANEL DELPHI STUDY
- SOFTWARE QUALITY AND IS PROJECT PERFORMANCE IMPROVEMENTS FROM SOFTWARE DEVELOPMENT PROCESS MATURITY AND IS IMPLEMENTATION STRATEGIES
- LARGE ENGINEERING PROJECT RISK MANAGEMENT USING A BAYESIAN BELIEF NETWORK
- MANAGING USER EXPECTATIONS ON SOFTWARE PROJECTS: LESSONS FROM THE TRENCHES
- THE EFFECTS OF CHANGE CONTROL AND MANAGEMENT REVIEW ON SOFTWARE FLEXIBILITY AND PROJECT PERFORMANCE
- KNOWLEDGE MANAGEMENT IN SOFTWARE ENGINEERING: A SYSTEMATIC REVIEW OF STUDIED CONCEPTS, FINDINGS AND RESEARCH METHODS USED
- GENETIC ALGORITHM BASED SOFTWARE INTEGRATION WITH MINIMUM SOFTWARE RISK
- WHAT DO SOFTWARE PRACTITIONERS REALLY THINK ABOUT PROJECT SUCCESS: A CROSS-CULTURAL COMPARISON
- EFFECT OF A VIRTUAL PROJECT TEAM ENVIRONMENT ON COMMUNICATION-RELATED PROJECT RISK
- THE RELATION OF REQUIREMENTS UNCERTAINTY AND STAKEHOLDER PERCEPTION GAPS TO PROJECT MANAGEMENT PERFORMANCE
- AN EMPIRICAL ANALYSIS OF THE IMPACT OF SOFTWARE DEVELOPMENT PROBLEM FACTORS ON SOFTWARE MAINTAINABILITY
- ANTECEDENTS AND CONSEQUENCES OF TEAM POTENCY IN SOFTWARE DEVELOPMENT PROJECTS
- ANALYZING PROJECT MANAGEMENT RESEARCH: PERSPECTIVES FROM TOP MANAGEMENT JOURNALS
- MINING SOFTWARE REPOSITORIES FOR COMPREHENSIBLE SOFTWARE FAULT PREDICTION MODELS
- FIRE RISK MANAGEMENT SYSTEM FOR SAFE OPERATION OF LARGE ATMOSPHERIC STORAGE TANKS
- AN EMPIRICAL INVESTIGATION OF THE DRIVERS OF SOFTWARE OUTSOURCING DECISIONS IN JAPANESE ORGANIZATIONS

- DEVELOPMENT OF A TEAM MEASURE FOR TACIT KNOWLEDGE IN SOFTWARE DEVELOPMENT TEAMS
- THE ROLE OF MONITORING AND SHIRKING IN INFORMATION SYSTEMS PROJECT MANAGEMENT
- USING PLANNING POKER FOR COMBINING EXPERT ESTIMATES IN SOFTWARE PROJECTS
- AN INTEGRATED REAL OPTIONS EVALUATING MODEL FOR INFORMATION TECHNOLOGY PROJECTS UNDER MULTIPLE RISKS
- SOFTWARE PROJECT MANAGEMENT ANTI-PATTERNS
- AN EXPERIMENTAL INVESTIGATION OF FACTORS INFLUENCING PERCEIVED CONTROL OVER A FAILING IT PROJECT
- EDITORIAL: REFLECTIONS ON THE INFLUENCES OF THE COCOMO, SPIRAL AND THE WIN-WIN MODELS ON SOFTWARE PROJECT AND RISK MANAGEMENT
- UNDERSTANDING THE EFFECTS OF REQUIREMENTS VOLATILITY IN SOFTWARE ENGINEERING BY USING ANALYTICAL MODELING AND SOFTWARE PROCESS SIMULATION
- IDENTIFICATION OF MORE RISKS CAN LEAD TO INCREASED OVER-OPTIMISM OF AND OVER-CONFIDENCE IN SOFTWARE DEVELOPMENT EFFORT ESTIMATES
- THE IMPACTS OF USER REVIEW ON SOFTWARE RESPONSIVENESS: MODERATING REQUIREMENTS UNCERTAINTY
- REDUCING SOFTWARE REQUIREMENT PERCEPTION GAPS THROUGH COORDINATION MECHANISMS
- CHOQUET INTEGRAL BASED AGGREGATION APPROACH TO SOFTWARE DEVELOPMENT RISK ASSESSMENT
- THE INFLUENCE OF CHECKLISTS AND ROLES ON SOFTWARE PRACTITIONER RISK PERCEPTION AND DECISION-MAKING
- SOFTWARE MAINTENANCE PROJECT DELAYS PREDICTION USING BAYESIAN NETWORKS
- USING A RISK-BASED APPROACH TO PROJECT SCHEDULING: A CASE ILLUSTRATION FROM SEMICONDUCTOR MANUFACTURING
- PLANNING EFFORT AS AN EFFECTIVE RISK MANAGEMENT TOOL
- TIME-LINE BASED MODEL FOR SOFTWARE PROJECT SCHEDULING WITH GENETIC ALGORITHMS
- ASSET MANAGEMENT TECHNIQUES
- MANAGING CUSTOMER RELATIONSHIP MANAGEMENT PROJECTS: THE CASE OF A LARGE FRENCH TELECOMMUNICATIONS COMPANY
- FROM COMPARATIVE RISK ASSESSMENT TO MULTI-CRITERIA DECISION ANALYSIS AND ADAPTIVE MANAGEMENT: RECENT DEVELOPMENTS AND APPLICATIONS
- MANAGING RISK IN SEMICONDUCTOR MANUFACTURING: A STOCHASTIC PREDICTIVE CONTROL APPROACH
- USING A RISK-BASED APPROACH TO PROJECT SCHEDULING: A CASE ILLUSTRATION FROM SEMICONDUCTOR MANUFACTURING
- LARGE ENGINEERING PROJECT RISK MANAGEMENT USING A BAYESIAN BELIEF NETWORK
- RISK MANAGEMENT IN ERP PROJECT INTRODUCTION: REVIEW OF THE LITERATURE
- RISK AND RISK MANAGEMENT IN SOFTWARE PROJECTS: A REASSESSMENT
- RETHINKING PROJECT MANAGEMENT: RESEARCHING THE ACTUALITY OF PROJECTS
- LIFE CYCLE ASSESSMENT OF WASTE MANAGEMENT SYSTEMS IN ITALIAN INDUSTRIAL AREAS: CASE STUDY OF 1ST MACROLOTTO OF PRATO
- SCIENTIFIC RESEARCH ONTOLOGY TO SUPPORT SYSTEMATIC REVIEW IN SOFTWARE ENGINEERING
- IN SEARCH OF OPPORTUNITY MANAGEMENT: IS THE RISK MANAGEMENT PROCESS ENOUGH?
- RISK ASSESSMENT IN PRACTICE: A REAL CASE STUDY
- PROJECT RISK IDENTIFICATION AND ASSESSMENT SIMULTANEOUSLY USING MULTI-ATTRIBUTE GROUP DECISION MAKING TECHNIQUE
- A FUZZY APPROACH TO CONSTRUCTION PROJECT RISK ASSESSMENT

- A STUDY OF ONTOLOGY-BASED RISK MANAGEMENT FRAMEWORK OF CONSTRUCTION PROJECTS THROUGH PROJECT LIFE CYCLE
- DOES RISK MANAGEMENT CONTRIBUTE TO IT PROJECT SUCCESS? A META-ANALYSIS OF EMPIRICAL EVIDENCE
- HRM IN PROJECT GROUPS: THE EFFECT OF PROJECT DURATION ON TEAM DEVELOPMENT EFFECTIVENESS
- EFFECT OF A VIRTUAL PROJECT TEAM ENVIRONMENT ON COMMUNICATION-RELATED PROJECT RISK
- RISK MANAGEMENT CAPABILITY MATURITY MODEL FOR COMPLEX PRODUCT SYSTEMS (COPS) PROJECTS
- THE RATIONAL CHOICE OF NOT APPLYING PROJECT RISK MANAGEMENT IN INFORMATION TECHNOLOGY PROJECTS
- RISK FACTORS IN THE COLLABORATIVE DEVELOPMENT OF MANAGEMENT INFORMATION SYSTEMS FOR NIGERIAN UNIVERSITIES
- PROJECT RISK EVALUATION USING A FUZZY ANALYTIC HIERARCHY PROCESS: AN APPLICATION TO INFORMATION TECHNOLOGY PROJECTS
- PLANNING CUTS AUTOMATION PROJECT RISK.
- HOW TO MEASURE THE EFFECTIVENESS OF RISK MANAGEMENT IN ENGINEERING DESIGN PROJECTS? PRESENTATION OF RMPASS: A NEW METHOD FOR ASSESSING RISK MANAGEMENT PERFORMANCE AND THE IMPACT OF KNOWLEDGE MANAGEMENT—INCLUDING A FEW RESULTS
- CONSTRUCTION PROJECT RISK ASSESSMENT USING EXISTING DATABASE AND PROJECT-SPECIFIC INFORMATION
- RISK MANAGEMENT: LESSONS FROM SIX CONTINENTS
- MEASURING PROJECT RISK
- CTAN FOR RISK ASSESSMENTS USING MULTILEVEL STOCHASTIC NETWORKS
- COMPLEXITY ADDS RISK
- IT'S ALL IN THE TECHNIQUE!
- RISK MODELING OF DEPENDENCE AMONG PROJECT TASK DURATIONS
- GAO CALLS FOR BETTER TRACKING OF FEDERAL HIGH-RISK IT WORK
- YUCCA MOUNTAIN'S FUTURE EXAMINED
- LESSONS LEARNED: 12 STEPS TO PROJECT RISK REDUCTION
- MODELING UNCERTAINTIES INVOLVED WITH SOFTWARE DEVELOPMENT WITH A STOCHASTIC PETRI NET
- ORGANIZATION SECURITY METRICS: CAN ORGANIZATIONS PROTECT THEMSELVES?
- THE PROJECT ASSESSMENT BY SIMULATION TECHNIQUE
- PROBABILISTIC CONTROL OF PROJECT PERFORMANCE USING CONTROL LIMIT CURVES
- ECONOMY PUTS IT INTO PENNY-PINCHING MODE
- CASE STUDY IN COST-BASED RISK ASSESSMENT FOR SELECTING A STREAM RESTORATION DESIGN METHOD FOR A CHANNEL RELOCATION PROJECT
- PROCESS AND RISK ANALYSIS TO REDUCE ERRORS IN CLINICAL LABORATORIES
- MINIUMUM PAIN, MAXIMUM GAIN
- SUCCESS/FAILURE FACTORS AND PERFORMANCE MEASURES OF WEB-BASED CONSTRUCTION PROJECT MANAGEMENT SYSTEMS: PROFESSIONALS' VIEWPOINT
- PROBLEMATIC PRACTICE IN INTEGRATED IMPACT ASSESSMENT: THE ROLE OF CONSULTANTS AND PREDICTIVE COMPUTER MODELS IN BURYING UNCERTAINTY
- CAUTIOUS ANALYSIS OF PROJECT RISKS BY INTERVAL-VALUED INITIAL DATA
- WEIGHTING THE RISKS
- ELIMINATING THE RISKS TO STARTING UP YOUR PLANT RIGHT THE FIRST TIME
- HIGH PERFORMANCE MANAGEMENT
- SEARCHING FOR "UNKNOWN UNKNOWNS."
- IMPLEMENTING LARGE PROJECTS IN SOFTWARE ENGINEERING COURSES
- KNOWLEDGE SOURCING BEYOND BUZZ AND PIPELINES: EVIDENCE FROM THE VIENNA SOFTWARE SECTOR
- SOFTWARE EXPORTS DEVELOPMENT IN COSTA RICA: POTENTIAL FOR POLICY REFORMS

- COMPUTERS AND SOFTWARE BEAR TAX BREAKS AND PITFALLS
- USE OF WRITING WITH SYMBOLS 2000 SOFTWARE TO FACILITATE EMERGENT LITERACY DEVELOPMENT
- AGILE METHODS IN EUROPEAN EMBEDDED SOFTWARE DEVELOPMENT ORGANISATIONS: A SURVEY ON THE ACTUAL USE AND USEFULNESS OF EXTREME PROGRAMMING AND SCRUM
- LESSONS FROM THE DEVELOPMENT OF COMPUTER BRAILLE CODE
- INFORMATION TECHNOLOGY (IT) SYSTEM USERS MUST BE ALLOWED TO DECIDE ON THE FUTURE DIRECTION OF MAJOR NATIONAL IT INITIATIVES. BUT THE TASK OF REDISTRIBUTING POWER EQUALLY AMONGST STAKEHOLDERS WILL NOT BE AN EASY ONE
- INTEGRATION OF SAFETY ANALYSIS IN MODEL-DRIVEN SOFTWARE DEVELOPMENT
- INTEGRATION OF SAFETY ANALYSIS IN MODEL-DRIVEN SOFTWARE DEVELOPMENT
- AN XML BASED METHODOLOGY TO MODEL AND USE SCENARIOS IN THE SOFTWARE DEVELOPMENT PROCESS
- USING COTS COMPONENTS IN SOFTWARE DEVELOPMENT
- TOWARDS A PHILOSOPHY OF SOFTWARE DEVELOPMENT: 40 YEARS AFTER THE BIRTH OF SOFTWARE ENGINEERING
- A NOVEL APPROACH OF REQUIREMENT GATHERING AND ANALYSIS FOR AGENT ORIENTED SOFTWARE ENGINEERING (AOSE)
- THE APPLICATION-BASED DOMAIN ANALYSIS APPROACH AND ITS OBJECT-PROCESS METHODOLOGY IMPLEMENTATION
- IMAGINING INDIA: SOFTWARE AND THE IDEOLOGY OF LIBERALISATION
- SOFTWARE REUSABILITY MODEL FOR PROCEDURE BASED DOMAIN-SPECIFIC SOFTWARE COMPONENTS
- FIVE TRENDS CHANGING THE FACE OF BI
- CHANGE MANAGEMENT AND SOFTWARE REUSE SUPPORTIVE 'GENETIC INFORMATION SYSTEM DEVELOPMENT AND MAINTENANCE' MODEL
- A CASE STUDY OF THREE SOFTWARE PROJECTS: CAN SOFTWARE DEVELOPERS ANTICIPATE THE USABILITY PROBLEMS IN THEIR SOFTWARE?
- MANAGING REQUIREMENTS INTER-DEPENDENCY FOR SOFTWARE PRODUCT LINE DERIVATION
- RISK ASSESSMENT
- BUILDING A FRAMEWORK TO MEASURE AND MINIMIZE INFORMATION RISKS
- A LIGHTWEIGHT TECHNIQUE FOR ASSESSING RISKS IN REQUIREMENTS ANALYSIS
- CONTEMPLATING RISK ASSESSMENT: A CRITIQUE OF NRC (1983, 1996)
- RISK ASSESSMENT OF OCCUPATIONAL STRESS: EXTENSIONS OF THE CLARKE AND COOPER APPROACH
- RELATIVE RELIABILITY RISK ASSESSMENT APPLIED TO ORIGINAL DESIGNS DURING CONCEPTUAL DESIGN PHASE
- ANTICIPATION OF RISKS AND BENEFITS OF EMERGING TECHNOLOGIES: A
 PROSPECTIVE ANALYSIS METHOD
- THE MARICOPA INTEGRATED RISK ASSESSMENT PROJECT: A NEW WAY OF LOOKING AT RISK
- SPOTLIGHT BEST PRACTICES
- FINESSING ON-DEMAND SOFTWARE DEALS
- CONSTRUCTION PROJECT RISK ASSESSMENT USING EXISTING DATABASE AND PROJECT-SPECIFIC INFORMATION
- AN ASSESSMENT OF INTEGRATED RISK ASSESSMENT
- A LIGHTWEIGHT TECHNIQUE FOR ASSESSING RISKS IN REQUIREMENTS ANALYSIS
- EVOLVING INFORMATION IN AN "EVIDENCE-BASED" WORLD: THEORETICAL CONSIDERATIONS
- ONLINE STRATEGIC INTELLIGENCE
- SWIMMING WITH THE SHARKS: PERSPECTIVES ON PROFESSIONAL RISK TAKING
- TECH FIRMS RISK 'CATASTROPHIC' BREACHES OF DATA SECURITY
- WHAT LIBRARIANS CAN LEARN FROM GAMERS

- STUDY ON THE RISK MANAGEMENT MECHANISM OF THE ENGINEERING PROJECT DURING DECISION-MAKING STAGE
- MODELLING PROJECT TRADE-OFF USING BAYESIAN NETWORKS
- PROJECT CONTROL AND RISK MANAGEMENT FOR PROJECT SUCCESS: A SOUTH AFRICAN CASE STUDY
- THE APPLICATION OF FAULT TREE ANALYSIS IN SOFTWARE PROJECT RISK MANAGEMENT
- RESEARCH ON RISK MANAGEMENT OF COMMUNICATION PROJECTS BASED ON AHP
- PROJECT RISK MANAGEMENT BASED ON A.D.HALL THREE-DIMENSION STRUCTURE ACTIVE-MATRIX THEORY
- PROJECT RISK PATTERN BASED ON PATTERN ANALYSIS
- INVESTIGATION OF GREY SYSTEM THEORY IN ENGINEERING PROJECT RISK MANAGEMENT
- STUDY ON PROJECT RISK MANAGEMENT IN CHINA
- FUZZY GROUP DECISION MAKING: A CASE USING FTOPSIS IN MEGA PROJECT RISK IDENTIFICATION AND ANALYSIS CONCURRENTLY
- A STUDY OF SOFTWARE DEVELOPMENT PROJECT RISK MANAGEMENT
- STUDY ON PROJECT RISK MANAGEMENT INFORMATION SYSTEM BASED ON PROGRESS SCHEDULE
- NETWORK STRUCTURE TO TREE STRUCTURE: A NEW METHOD OF PROJECT RISK MANAGEMENT DECISION
- MODEL IDENTIFICATION OF RISK MANAGEMENT SYSTEM
- TEAMWORK PATTERN OF PROJECT RISK MANAGEMENT BASED ON KNOWLEDGE REUSE
- LARGE ENGINEERING PROJECT RISK MANAGEMENT USING A BAYESIAN BELIEF NETWORK
- SOFTWARE PROJECT RISK ASSESSMENT BASED ON FUZZY LINGUISTIC MULTIPLE ATTRIBUTE DECISION MAKING
- THE APPLICATION OF RISK MATRIX TO SOFTWARE PROJECT RISK MANAGEMENT
- A CASE STUDY FOR THE IMPLEMENTATION OF AN AGILE RISK MANAGEMENT PROCESS IN MULTIPLE PROJECTS ENVIRONMENTS
- RESEARCH ON MULTI-RISK ELEMENT TRANSMISSION MODEL OF ENTERPRISE PROJECT CHAIN
- PROJECT, SYSTEMS AND RISK MANAGEMENT PROCESSES INTERACTIONS
- PROJECT MANAGEMENT USING RISK IDENTIFICATION ARCHITECTURE PATTERN (RIAP) MODEL: A CASE STUDY ON A WEB-BASED APPLICATION
- THE RISKS OF RISK MANAGEMENT
- SOFTWARE PROJECT RISK MANAGEMENT MODELING WITH NEURAL NETWORK AND SUPPORT VECTOR MACHINE APPROACHES
- COST AT RISK IN R&D PROJECT RISK MANAGEMENT
- THE INFLUENCE OF EXPERIENCE AND INFORMATION SEARCH STYLES ON PROJECT RISK IDENTIFICATION PERFORMANCE
- RISK AND RISK MANAGEMENT IN SOFTWARE PROJECTS: A REASSESSMENT
- MONITORING RISK RESPONSE ACTIONS FOR EFFECTIVE PROJECT RISK MANAGEMENT
- RISK MANAGEMENT APPLIED TO PROJECTS, PROGRAMS, AND PORTFOLIOS
- A REVIEW OF TECHNIQUES FOR RISK MANAGEMENT IN PROJECTS
- SUPPORTING DECISION MAKING IN RISK MANAGEMENT THROUGH AN EVIDENCE-BASED INFORMATION SYSTEMS PROJECT RISK CHECKLIST
- RISK MANAGEMENT IN A MULTI-PROJECT ENVIRONMENT: AN APPROACH TO MANAGE PORTFOLIO RISKS
- THE EFFECT OF INTERVENING CONDITIONS ON THE MANAGEMENT OF PROJECT RISK
- IRMAS DEVELOPMENT OF A RISK MANAGEMENT TOOL FOR COLLABORATIVE MULTI-SITE, MULTI-PARTNER NEW PRODUCT DEVELOPMENT PROJECTS
- CAN A PROJECT CHAMPION BIAS PROJECT SELECTION AND, IF SO, HOW CAN WE AVOID IT?
- PROJECT MANAGEMENT QUALITY AND THE VALUE OF FLEXIBLE STRATEGIES

- SUBCONTRACTORS' BUSINESS RELATIONSHIPS AS RISK SOURCES IN PROJECT NETWORKS
- COMPETENCE-BASED RISK PERCEPTION IN THE PROJECT BUSINESS
- FACING KNOWLEDGE EVOLUTION IN SPACE PROJECT: A MULTI-VIEWPOINT APPROACH
- EXISTING AND FUTURE STANDARDS FOR EVENT-DRIVEN BUSINESS PROCESS MANAGEMENT
- THE ROLE OF SOFTWARE PROCESS SIMULATION MODELING IN SOFTWARE RISK MANAGEMENT: A SYSTEMATIC REVIEW
- A VISUALIZATION TOOL FOR RISK ASSESSMENT IN SOFTWARE DEVELOPMENT
- SOFTWARE RISK ASSESSMENT AND ESTIMATION MODEL
- A REVIEW OF SOFTWARE RISK MANAGEMENT FOR SELECTION OF BEST TOOLS AND TECHNIQUES
- ASSESSING SOFTWARE RISK MANAGEMENT PRACTICES IN A SMALL SCALE PROJECT
- SOFTWARE RISK IDENTIFICATION AND MITIGATION IN INCREMENTAL MODEL
- A RISK CONTROL OPTIMIZATION MODEL FOR SOFTWARE PROJECT
- SOFTWARE RISK MANAGEMENT BARRIERS: AN EMPIRICAL STUDY
- AN APPROACH TO FACILITATE SOFTWARE RISK IDENTIFICATION
- THE INFLUENCE OF CHECKLISTS AND ROLES ON SOFTWARE PRACTITIONER RISK PERCEPTION AND DECISION-MAKING
- A NEURAL NETWORKS APPROACH FOR SOFTWARE RISK ANALYSIS
- RESEARCH ON OPTIMIZING SOFTWARE PROJECT PROCESS BASED RISK CONTROL
 METHOD
- RISK MANAGEMENT THROUGH ARCHITECTURE DESIGN
- UNDERSTANDING THE EFFECTS OF REQUIREMENTS VOLATILITY IN SOFTWARE ENGINEERING BY USING ANALYTICAL MODELING AND SOFTWARE PROCESS SIMULATION
- REDUCING SOFTWARE REQUIREMENT PERCEPTION GAPS THROUGH COORDINATION MECHANISMS
- SOFTWARE PRODUCT INTEGRATION: A CASE STUDY-BASED SYNTHESIS OF REFERENCE MODELS
- EMPIRICAL VALIDATION OF THE CLASSIC CHANGE CURVE ON A SOFTWARE TECHNOLOGY CHANGE PROJECT
- INVESTIGATING THE RELATIONSHIP BETWEEN SCHEDULES AND KNOWLEDGE TRANSFER IN SOFTWARE TESTING
- MULTIDIMENSIONAL SOFTWARE MONITORING APPLIED TO ERP
- IMPROVING PROCESS DECISIONS IN COTS-BASED DEVELOPMENT VIA RISK-BASED PRIORITIZATION

APÊNDICE D

RELAÇÃO ALFABÉTICA DE FONTES-PRIMÁRIAS ANALISADAS NA REVISÃO SISTEMÁTICA (REPLICAÇÕES, EDITORIAIS E REVISÕES DE LIVROS EXCLUÍDOS)

- 'CULTURAL' DIFFERENCES IN PROJECT RISK PERCEPTION: AN EMPIRICAL COMPARISON OF CHINA AND CANADA
- 3D FOREST STRUCTURE ANALYSIS FROM OPTICAL AND LIDAR DATA
- A CASE STUDY FOR THE IMPLEMENTATION OF AN AGILE RISK MANAGEMENT PROCESS IN MULTIPLE PROJECTS ENVIRONMENTS
- A CASE STUDY OF THREE SOFTWARE PROJECTS: CAN SOFTWARE DEVELOPERS ANTICIPATE THE USABILITY PROBLEMS IN THEIR SOFTWARE?
- A COMPARATIVE STUDY OF IMPORTANT RISK FACTORS INVOLVED IN OFFSHORE AND DOMESTIC OUTSOURCING OF SOFTWARE DEVELOPMENT PROJECTS: A TWO-PANEL DELPHI STUDY
- A COMPARISON OF UPPER ONTOLOGIES
- A COMPREHENSIVE MODEL FOR SELECTING INFORMATION SYSTEM PROJECT UNDER FUZZY ENVIRONMENT
- A DISTRIBUTED TABLING ALGORITHM FOR RULE BASED POLICY SYSTEMS
- A FRESH LOOK AT THE RELIABILITY OF LONG-TERM DIGITAL STORAGE
- A FULLY VIRTUAL MULTI-NODE 1553 BUS COMPUTER
- A FUZZY APPROACH TO CONSTRUCTION PROJECT RISK ASSESSMENT
- A GAME THEORY APPROACH FOR THE ALLOCATION OF RISKS IN TRANSPORT PUBLIC PRIVATE PARTNERSHIPS
- A LIFE CYCLE EVALUATION OF CHANGE IN AN ENGINEERING ORGANIZATION: A CASE STUDY
- A LIGHTWEIGHT TECHNIQUE FOR ASSESSING RISKS IN REQUIREMENTS ANALYSIS
- A NEURAL NETWORKS APPROACH FOR SOFTWARE RISK ANALYSIS
- A NOVEL APPROACH OF REQUIREMENT GATHERING AND ANALYSIS FOR AGENT ORIENTED SOFTWARE ENGINEERING (AOSE)
- A PERVASIVE COMPUTING SYSTEM FOR THE OPERATING ROOM OF THE FUTURE
- A POSTERIORI COMPLIANCE CONTROL
- A QUALITATIVE INVESTIGATION OF UML MODELING CONVENTIONS
- A REDEFINITION OF THE PROJECT RISK PROCESS: USING VULNERABILITY TO OPEN UP THE EVENT-CONSEQUENCE LINK
- A REVIEW OF SOFTWARE RISK MANAGEMENT FOR SELECTION OF BEST TOOLS AND TECHNIQUES
- A REVIEW OF TECHNIQUES FOR RISK MANAGEMENT IN PROJECTS
- A RISK CONTROL OPTIMIZATION MODEL FOR SOFTWARE PROJECT
- A SOCIO-TECHNICAL FRAMEWORK FOR SUPPORTING PROGRAMMERS
- A STUDY OF ONTOLOGY-BASED RISK MANAGEMENT FRAMEWORK OF CONSTRUCTION PROJECTS THROUGH PROJECT LIFE CYCLE
- A STUDY OF SOFTWARE DEVELOPMENT PROJECT RISK MANAGEMENT
- A SURVEY OF DYNAMIC SPECTRUM ACCESS

- A TWO-WAY INFLUENCE BETWEEN BUSINESS STRATEGY AND PROJECT MANAGEMENT
- A VIEW OF 20TH AND 21ST CENTURY SOFTWARE ENGINEERING
- A VISUALIZATION TOOL FOR RISK ASSESSMENT IN SOFTWARE DEVELOPMENT
- ADOPTING CURVILINEAR COMPONENT ANALYSIS TO IMPROVE SOFTWARE COST ESTIMATION ACCURACY. MODEL, APPLICATION STRATEGY, AND AN EXPERIMENTAL VERIFICATION
- AGENT-BASED PARTICIPATORY SIMULATIONS: MERGING MULTI-AGENT; SYSTEMS AND ROLE-PLAYING GAMES
- AGILE METHODS IN EUROPEAN EMBEDDED SOFTWARE DEVELOPMENT ORGANISATIONS: A SURVEY ON THE ACTUAL USE AND USEFULNESS OF EXTREME PROGRAMMING AND SCRUM
- AN APPROACH TO FACILITATE SOFTWARE RISK IDENTIFICATION
- AN APPROACH TO IMPROVING PARAMETRIC ESTIMATION MODELS IN THE CASE OF VIOLATION OF ASSUMPTIONS BASED UPON RISK ANALYSIS
- AN ASSESSMENT OF INTEGRATED RISK ASSESSMENT
- AN EMPIRICAL ANALYSIS OF RISK COMPONENTS AND PERFORMANCE ON SOFTWARE PROJECTS
- AN EMPIRICAL ANALYSIS OF THE IMPACT OF SOFTWARE DEVELOPMENT PROBLEM FACTORS ON SOFTWARE MAINTAINABILITY
- AN EMPIRICAL INVESTIGATION OF THE DRIVERS OF SOFTWARE OUTSOURCING DECISIONS IN JAPANESE ORGANIZATIONS
- AN EPISTEMOLOGICAL EVALUATION OF RESEARCH INTO PROJECTS AND THEIR MANAGEMENT: METHODOLOGICAL ISSUES
- AN EXPERIMENTAL INVESTIGATION OF FACTORS INFLUENCING PERCEIVED CONTROL OVER A FAILING IT PROJECT
- AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY FOR SOFTWARE PROJECT ESTIMATION AND MEASUREMENT SYSTEMS
- AN INTEGRATED REAL OPTIONS EVALUATING MODEL FOR INFORMATION TECHNOLOGY PROJECTS UNDER MULTIPLE RISKS
- AN INTELLIGENT EARLY WARNING SYSTEM FOR SOFTWARE QUALITY IMPROVEMENT AND PROJECT MANAGEMENT
- AN XML BASED METHODOLOGY TO MODEL AND USE SCENARIOS IN THE SOFTWARE DEVELOPMENT PROCESS
- ANALYZING PROJECT MANAGEMENT RESEARCH: PERSPECTIVES FROM TOP MANAGEMENT JOURNALS
- ANTECEDENTS AND CONSEQUENCES OF TEAM POTENCY IN SOFTWARE DEVELOPMENT PROJECTS
- ANTICIPATION OF RISKS AND BENEFITS OF EMERGING TECHNOLOGIES: A
 PROSPECTIVE ANALYSIS METHOD
- APPLYING FEEDBACK CONTROL TO A REPLICA MANAGEMENT SYSTEM
- APPLYING REAL OPTIONS THINKING TO INFORMATION SECURITY IN NETWORKED ORGANIZATIONS
- APPROACHES FOR ENSURING SECURITY AND PRIVACY ON UNPLANNED UBIQUITOUS COMPUTING INTERACTIONS
- ASSESSING RISK AND UNCERTAINTY INHERENT IN CHINESE HIGHWAY PROJECTS USING AHP
- ASSESSING SOFTWARE RISK MANAGEMENT PRACTICES IN A SMALL SCALE PROJECT
- ASSET MANAGEMENT TECHNIQUES
- BUILDING A FRAMEWORK TO MEASURE AND MINIMIZE INFORMATION RISKS
- BUMP IN THE ETHER: A FRAMEWORK FOR SECURING SENSITIVE USER INPUT
- CAN A PROJECT CHAMPION BIAS PROJECT SELECTION AND, IF SO, HOW CAN WE AVOID IT?
- CAPITAL PROGRAMMING GUIDE
- CASE STUDY IN COST-BASED RISK ASSESSMENT FOR SELECTING A STREAM RESTORATION DESIGN METHOD FOR A CHANNEL RELOCATION PROJECT
- CAUTIOUS ANALYSIS OF PROJECT RISKS BY INTERVAL-VALUED INITIAL DATA

- CHALLENGES IN VISUAL DATA ANALYSIS
- CHANGE MANAGEMENT AND SOFTWARE REUSE SUPPORTIVE 'GENETIC' INFORMATION SYSTEM DEVELOPMENT AND MAINTENANCE' MODEL
- CHOQUET INTEGRAL BASED AGGREGATION APPROACH TO SOFTWARE DEVELOPMENT RISK ASSESSMENT
- CLIENT VERSUS CONTRACTOR PERSPECTIVES ON PROJECT SUCCESS CRITERIA
- COLLABORATION IN SOFTWARE ENGINEERING: A ROADMAP
- COLLABORATIVE MULTIDISCIPLINARY DESIGN IN VIRTUAL ENVIRONMENTS
- COMMON SENSE REASONING FROM CYC TO INTELLIGENT ASSISTANT
- COMPETENCE-BASED RISK PERCEPTION IN THE PROJECT BUSINESS
- COMPLEXITY ADDS RISK
- COMPUTER SYSTEM SAFETY AND HAZARD ANALYSIS
- COMPUTERS AND SOFTWARE BEAR TAX BREAKS AND PITFALLS
- CONSTRUCTION PROJECT RISK ASSESSMENT USING EXISTING DATABASE AND PROJECT-SPECIFIC INFORMATION
- CONSTRUCTION PROJECT RISK ASSESSMENT USING EXISTING DATABASE AND PROJECT-SPECIFIC INFORMATION
- CONTEMPLATING RISK ASSESSMENT: A CRITIQUE OF NRC (1983, 1996)
- COST AT RISK IN R&D PROJECT RISK MANAGEMENT
- CREATIVITY VERSUS THE PERCEPTION OF CREATIVITY IN COMPUTATIONAL SYSTEMS
- CRITICAL CHAIN AND RISK ANALYSIS APPLIED TO HIGH-RISK INDUSTRY MAINTENANCE: A CASE STUDY
- CRITICAL DETERMINANTS OF PROJECT COORDINATION
- CRITICAL REVIEW OF STOCHASTIC SIMULATION LITERATURE AND APPLICATIONS FOR HEALTH ACTUARIES
- CTAN FOR RISK ASSESSMENTS USING MULTILEVEL STOCHASTIC NETWORKS
- DATA MINING MODEL FOR IDENTIFYING PROJECT PROFITABILITY VARIABLES
- DECISION SUPPORT SYSTEM FOR SELECTING THE PROPER PROJECT DELIVERY METHOD USING ANALYTICAL HIERARCHY PROCESS (AHP)
- DEFINING SUCCESS FOR SOFTWARE PROJECTS: AN EXPLORATORY REVELATION
- DELIBERATE IGNORANCE IN PROJECT RISK MANAGEMENT
- DESIGN OF A MODELLING LANGUAGE FOR INFORMATION SYSTEM SECURITY RISK MANAGEMENT
- DESIGNING COOPERATIVE IS: EXPLORING AND EVALUATING ALTERNATIVES
- DEVELOPMENT OF A TEAM MEASURE FOR TACIT KNOWLEDGE IN SOFTWARE DEVELOPMENT TEAMS
- DIRECT ANONYMOUS ATTESTATION (DAA): ENSURING PRIVACY WITH CORRUPT ADMINISTRATORS
- DISTRIBUTED SCRUM: AGILE PROJECT MANAGEMENT WITH OUTSOURCED DEVELOPMENT TEAMS
- DOES RISK MANAGEMENT CONTRIBUTE TO IT PROJECT SUCCESS? A META-ANALYSIS OF EMPIRICAL EVIDENCE
- DRIVING AND MANAGING ARCHITECTURAL DECISIONS WITH ASPECTS
- ECONOMY PUTS IT INTO PENNY-PINCHING MODE
- EFFECT OF A VIRTUAL PROJECT TEAM ENVIRONMENT ON COMMUNICATION-RELATED PROJECT RISK
- ELIMINATING THE RISKS TO STARTING UP YOUR PLANT RIGHT THE FIRST TIME
- EMPIRICAL VALIDATION OF THE CLASSIC CHANGE CURVE ON A SOFTWARE TECHNOLOGY CHANGE PROJECT
- EMPOWERING SOFTWARE MAINTAINERS WITH SEMANTIC WEB TECHNOLOGIES
- EVALUATING SOFTWARE PROJECT PORTFOLIO RISKS
- EVOLUTION OF PROJECT MANAGEMENT RESEARCH AS EVIDENCED BY PAPERS PUBLISHED IN THE INTERNATIONAL JOURNAL OF PROJECT MANAGEMENT
- EVOLVING INFORMATION IN AN "EVIDENCE-BASED" WORLD: THEORETICAL CONSIDERATIONS

- EXISTING AND FUTURE STANDARDS FOR EVENT-DRIVEN BUSINESS PROCESS MANAGEMENT
- EXPERIENCES BUILDING PLANETLAB
- EXPERIENCES WITH MARMOSET: DESIGNING AND USING AN ADVANCED SUBMISSION AND TESTING SYSTEM FOR PROGRAMMING COURSES
- EXPLORATION AND PROJECT MANAGEMENT
- EXPLORING THE RELATIONSHIP BETWEEN SOFTWARE PROJECT DURATION AND RISK EXPOSURE: A CLUSTER ANALYSIS
- FACING KNOWLEDGE EVOLUTION IN SPACE PROJECT: A MULTI-VIEWPOINT APPROACH
- FAURA. A DYNAMIC WORKFLOW MANAGEMENT SYSTEM FOR COORDINATION OF COOPERATIVE ACTIVITIES
- FINAL REPORT FOR NCHRP REPORT 574: GUIDANCE FOR COST ESTIMATION AND MANAGEMENT FOR HIGHWAY PROJECTS DURING PLANNING, PROGRAMMING, AND PRECONSTRUCTION
- FINESSING ON-DEMAND SOFTWARE DEALS
- FIRE RISK MANAGEMENT SYSTEM FOR SAFE OPERATION OF LARGE ATMOSPHERIC STORAGE TANKS
- FIVE TRENDS CHANGING THE FACE OF BI
- FLIGHT DATA RECORDER: MONITORING PERSISTENT-STATE INTERACTIONS TO IMPROVE SYSTEMS MANAGEMENT
- FORMAL ANALYSIS OF SOME SECURE PROCEDURES FOR CERTIFICATE DELIVERY
- FOUNDATIONS OF PROGRAM MANAGEMENT: A BIBLIOMETRIC VIEW
- FROM COMPARATIVE RISK ASSESSMENT TO MULTI-CRITERIA DECISION ANALYSIS AND ADAPTIVE MANAGEMENT: RECENT DEVELOPMENTS AND APPLICATIONS
- FUZZY GROUP DECISION MAKING: A CASE USING FTOPSIS IN MEGA PROJECT RISK IDENTIFICATION AND ANALYSIS CONCURRENTLY
- GAO CALLS FOR BETTER TRACKING OF FEDERAL HIGH-RISK IT WORK
- GENETIC ALGORITHM BASED SOFTWARE INTEGRATION WITH MINIMUM SOFTWARE RISK
- GOOD PROJECT GOVERNANCE FOR PROPER RISK ALLOCATION IN PUBLIC-PRIVATE PARTNERSHIPS IN INDONESIA
- HIGH PERFORMANCE MANAGEMENT
- HOW BODIES MATTER: FIVE THEMES FOR INTERACTION DESIGN
- HOW DEVELOPERS COPY
- HOW TO MEASURE THE EFFECTIVENESS OF RISK MANAGEMENT IN ENGINEERING DESIGN PROJECTS? PRESENTATION OF RMPASS: A NEW METHOD FOR ASSESSING RISK MANAGEMENT PERFORMANCE AND THE IMPACT OF KNOWLEDGE MANAGEMENT—INCLUDING A FEW RESULTS
- HRM IN PROJECT GROUPS: THE EFFECT OF PROJECT DURATION ON TEAM DEVELOPMENT EFFECTIVENESS
- HYPERMEDIA SUPPORT FOR ARGUMENTATION-BASED RATIONALE
- IDENTIFICATION OF MORE RISKS CAN LEAD TO INCREASED OVER-OPTIMISM OF AND OVER-CONFIDENCE IN SOFTWARE DEVELOPMENT EFFORT ESTIMATES
- IDENTIFYING REFACTORINGS FROM SOURCECODE CHANGES
- IMAGE-GUIDED SURGERY AND MEDICAL ROBOTICS IN THE CRANIAL AREA
- IMAGINING INDIA: SOFTWARE AND THE IDEOLOGY OF LIBERALISATION
- IMPLEMENTING LARGE PROJECTS IN SOFTWARE ENGINEERING COURSES
- IMPROVING PROCESS DECISIONS IN COTS-BASED DEVELOPMENT VIA RISK-BASED PRIORITIZATION
- IN SEARCH OF OPPORTUNITY MANAGEMENT: IS THE RISK MANAGEMENT PROCESS ENOUGH?
- INFORMATION GOVERNANCE IN NHS'S NPFIT: A CASE FOR POLICY SPECIFICATION
- INFORMATION TECHNOLOGY (IT) SYSTEM USERS MUST BE ALLOWED TO DECIDE ON THE FUTURE DIRECTION OF MAJOR NATIONAL IT INITIATIVES. BUT THE TASK OF REDISTRIBUTING POWER EQUALLY AMONGST STAKEHOLDERS WILL NOT BE AN EASY ONE

- INNOVATION IN PROJECT MANAGEMENT: VOICES OF RESEARCHERS
- INTEGRATING SECURITY AND USABILITY INTO THE REQUIREMENTS AND DESIGN PROCESS
- INTEGRATION OF SAFETY ANALYSIS IN MODEL-DRIVEN SOFTWARE DEVELOPMENT
- INTERPRETING AN ERP-IMPLEMENTATION PROJECT FROM A STAKEHOLDER PERSPECTIVE
- INTERVENING CONDITIONS ON THE MANAGEMENT OF PROJECT RISK: DEALING WITH UNCERTAINTY IN INFORMATION TECHNOLOGY PROJECTS
- INVESTIGATING THE RELATIONSHIP BETWEEN SCHEDULES AND KNOWLEDGE TRANSFER IN SOFTWARE TESTING
- INVESTIGATION OF GREY SYSTEM THEORY IN ENGINEERING PROJECT RISK MANAGEMENT
- IRMAS DEVELOPMENT OF A RISK MANAGEMENT TOOL FOR COLLABORATIVE MULTI-SITE, MULTI-PARTNER NEW PRODUCT DEVELOPMENT PROJECTS
- IT'S ALL IN THE TECHNIQUE!
- KEY POINTS OF CONTENTION IN FRAMING ASSUMPTIONS FOR RISK AND UNCERTAINTY MANAGEMENT
- KNOWLEDGE MANAGEMENT IN SOFTWARE ENGINEERING: A SYSTEMATIC REVIEW OF STUDIED CONCEPTS, FINDINGS AND RESEARCH METHODS USED
- KNOWLEDGE SOURCING BEYOND BUZZ AND PIPELINES: EVIDENCE FROM THE VIENNA SOFTWARE SECTOR
- LARGE ENGINEERING PROJECT RISK MANAGEMENT USING A BAYESIAN BELIEF NETWORK
- LARGE SCALE DETECTION OF IRREGULARITIES IN ACCOUNTING DATA
- LEARNING WITHIN PROJECT PRACTICE: COGNITIVE STYLES EXPOSED
- LESSONS FROM THE DEVELOPMENT OF COMPUTER BRAILLE CODE
- LESSONS LEARNED: 12 STEPS TO PROJECT RISK REDUCTION
- LIFE CYCLE ASSESSMENT OF WASTE MANAGEMENT SYSTEMS IN ITALIAN INDUSTRIAL AREAS: CASE STUDY OF 1ST MACROLOTTO OF PRATO
- M.: MYONTOLOGY: THE MARRIAGE OF ONTOLOGY ENGINEERING AND COLLECTIVE INTELLIGENCE
- MANAGEMENT OF FLEXIBILITY IN PROJECTS
- MANAGERIAL PERCEPTIONS OF POLITICAL RISK IN INTERNATIONAL PROJECTS
- MANAGING CUSTOMER RELATIONSHIP MANAGEMENT PROJECTS: THE CASE OF A LARGE FRENCH TELECOMMUNICATIONS COMPANY
- MANAGING LARGE SCALE DATA FOR EARTHQUAKE SIMULATIONS
- MANAGING LARGE-SCALE WORKFLOW EXECUTION FROM RESOURCE PROVISIONING TO PROVENANCE TRACKING: THE CYBERSHAKE EXAMPLE
- MANAGING PROJECT EXPECTATIONS IN HUMAN SERVICES INFORMATION SYSTEMS IMPLEMENTATIONS: THE CASE OF HOMELESS MANAGEMENT INFORMATION SYSTEMS
- MANAGING PUBLIC-PRIVATE MEGAPROJECTS: PARADOXES, COMPLEXITY, AND PROJECT DESIGN
- MANAGING REQUIREMENTS INTER-DEPENDENCY FOR SOFTWARE PRODUCT LINE DERIVATION
- MANAGING RISK IN SEMICONDUCTOR MANUFACTURING: A STOCHASTIC PREDICTIVE CONTROL APPROACH
- MANAGING RISKS IN MEGA DEFENSE ACQUISITION PROJECTS: PERFORMANCE, POLICY, AND OPPORTUNITIES
- MANAGING ROBUST DEVELOPMENT PROCESS FOR HIGH-TECH STARTUPS THROUGH MULTI-PROJECT LEARNING: THE CASE OF TWO EUROPEAN START-UPS
- MANAGING TEAM ENTREES AND WITHDRAWALS DURING THE PROJECT LIFE CYCLE
- MANAGING USER EXPECTATIONS ON SOFTWARE PROJECTS: LESSONS FROM THE TRENCHES
- MANAGING VALUE AS A MANAGEMENT STYLE FOR PROJECTS
- MDI A RULE-BASED MULTI-DOCUMENT AND TOOL INTEGRATION APPROACH
- MEASURING PROJECT RISK

- METAMODELING THE REQUIREMENTS OF WEB SYSTEMS
- MINING SOFTWARE REPOSITORIES FOR COMPREHENSIBLE SOFTWARE FAULT PREDICTION MODELS
- MINIUMUM PAIN, MAXIMUM GAIN
- MOAST AND USARSIM A COMBINED FRAMEWORK FOR THE DEVELOPMENT AND TESTING OF AUTONOMOUS SYSTEMS
- MOBILIZATION OF SOFTWARE DEVELOPERS: THE FREE SOFTWARE MOVEMENT
- MODEL IDENTIFICATION OF RISK MANAGEMENT SYSTEM
- MODELING SAFETY CASE EVOLUTION EXAMPLES FROM THE AIR TRAFFIC MANAGEMENT DOMAIN
- MODELING UNCERTAINTIES INVOLVED WITH SOFTWARE DEVELOPMENT WITH A STOCHASTIC PETRI NET
- MODELLING PROJECT TRADE-OFF USING BAYESIAN NETWORKS
- MODELLING RISK AND IDENTIFYING COUNTERMEASURES IN ORGANIZATIONS
- MONITORING RISK RESPONSE ACTIONS FOR EFFECTIVE PROJECT RISK MANAGEMENT
- MOTIVES FOR ESTABLISHING SHARED SERVICE CENTERS IN PUBLIC ADMINISTRATIONS
- MULTIDIMENSIONAL SOFTWARE MONITORING APPLIED TO ERP
- NETWORK STRUCTURE TO TREE STRUCTURE: A NEW METHOD OF PROJECT RISK MANAGEMENT DECISION
- ONLINE STRATEGIC INTELLIGENCE
- OPTIMIZING THE DEVELOPMENT SCHEDULE OF RESORT PROJECTS BY INTEGRATING SIMULATION AND GENETIC ALGORITHM
- OPTION-BASED RISK MANAGEMENT: A FIELD STUDY OF SEQUENTIAL IT INVESTMENT DECISIONS
- ORGANIZATION SECURITY METRICS: CAN ORGANIZATIONS PROTECT THEMSELVES?
- PASTWATCH: A DISTRIBUTED VERSION CONTROL SYSTEM
- PERSONAL RIGHTS MANAGEMENT,: TAMING CAMERAPHONES FOR INDIVIDUAL PRIVACY MANAGEMENT
- PERSPECTIVES ON PROJECT MANAGEMENT
- PLANNING CUTS AUTOMATION PROJECT RISK.
- PLANNING EFFORT AS AN EFFECTIVE RISK MANAGEMENT TOOL
- PREDICTING PROJECT PERFORMANCE THROUGH NEURAL NETWORKS
- PREDICTING SOFTWARE DEFECTS IN VARYING DEVELOPMENT LIFECYCLES USING BAYESIAN NETS
- PROBABILISTIC CONTROL OF PROJECT PERFORMANCE USING CONTROL LIMIT CURVES
- PROBLEMATIC PRACTICE IN INTEGRATED IMPACT ASSESSMENT: THE ROLE OF CONSULTANTS AND PREDICTIVE COMPUTER MODELS IN BURYING UNCERTAINTY
- PROCESS AND RISK ANALYSIS TO REDUCE ERRORS IN CLINICAL LABORATORIES
- PROJECT CONTROL AND RISK MANAGEMENT FOR PROJECT SUCCESS: A SOUTH AFRICAN CASE STUDY
- PROJECT DATA INCORPORATING QUALITATIVE FACTS FOR IMPROVED SOFTWARE DEFECT PREDICTION
- PROJECT ENSAYO: A VIRTUAL EMERGENCY OPERATIONS CENTER FOR DISASTER MANAGEMENT RESEARCH, TRAINING, AND DISCOVERY
- PROJECT MANAGEMENT AND NATIONAL CULTURE: A DUTCH-FRENCH CASE STUDY
- PROJECT MANAGEMENT DEPLOYMENT: THE ROLE OF CULTURAL FACTORS
- PROJECT MANAGEMENT EFFECTIVENESS IN PROJECT-ORIENTED BUSINESS ORGANIZATIONS
- PROJECT MANAGEMENT OF UNEXPECTED EVENTS
- PROJECT MANAGEMENT QUALITY AND THE VALUE OF FLEXIBLE STRATEGIES
- PROJECT MANAGEMENT STANDARDS DIFFUSION AND APPLICATION IN GERMANY AND SWITZERLAND
- PROJECT MANAGEMENT USING RISK IDENTIFICATION ARCHITECTURE PATTERN (RIAP) MODEL: A CASE STUDY ON A WEB-BASED APPLICATION

- PROJECT OVERLOAD: AN EXPLORATORY STUDY OF WORK AND MANAGEMENT IN MULTI-PROJECT SETTINGS
- PROJECT RISK EVALUATION USING A FUZZY ANALYTIC HIERARCHY PROCESS: AN APPLICATION TO INFORMATION TECHNOLOGY PROJECTS
- PROJECT RISK IDENTIFICATION AND ASSESSMENT SIMULTANEOUSLY USING MULTI-ATTRIBUTE GROUP DECISION MAKING TECHNIQUE
- PROJECT RISK MANAGEMENT BASED ON A.D.HALL THREE-DIMENSION STRUCTURE ACTIVE-MATRIX THEORY
- PROJECT RISK MANAGEMENT PRACTICE: THE CASE OF A SOUTH AFRICAN UTILITY COMPANY
- PROJECT RISK PATTERN BASED ON PATTERN ANALYSIS
- PROJECT, SYSTEMS AND RISK MANAGEMENT PROCESSES INTERACTIONS
- RATIONALE MANAGEMENT IN SOFTWARE ENGINEERING
- REASONING SUPPORT FOR ONTOLOGY DESIGN
- REDUCING SOFTWARE REQUIREMENT PERCEPTION GAPS THROUGH COORDINATION MECHANISMS
- RELATIVE RELIABILITY RISK ASSESSMENT APPLIED TO ORIGINAL DESIGNS DURING CONCEPTUAL DESIGN PHASE
- RESEARCH ON MULTI-RISK ELEMENT TRANSMISSION MODEL OF ENTERPRISE PROJECT CHAIN
- RESEARCH ON OPTIMIZING SOFTWARE PROJECT PROCESS BASED RISK CONTROL METHOD
- RESEARCH ON RISK MANAGEMENT OF COMMUNICATION PROJECTS BASED ON AHP
- RESEARCH STATEMENT
- RETHINKING PROJECT MANAGEMENT: RESEARCHING THE ACTUALITY OF PROJECTS
- RISK AND RISK MANAGEMENT IN SOFTWARE PROJECTS: A REASSESSMENT
- RISK ASSESSMENT
- RISK ASSESSMENT IN PRACTICE: A REAL CASE STUDY
- RISK ASSESSMENT OF OCCUPATIONAL STRESS: EXTENSIONS OF THE CLARKE AND COOPER APPROACH
- RISK AVOIDANCE IN BIDDING FOR SOFTWARE PROJECTS BASED ON LIFE CYCLE MANAGEMENT THEORY
- RISK FACTORS IN THE COLLABORATIVE DEVELOPMENT OF MANAGEMENT INFORMATION SYSTEMS FOR NIGERIAN UNIVERSITIES
- RISK MANAGEMENT APPLIED TO PROJECTS, PROGRAMS, AND PORTFOLIOS
- RISK MANAGEMENT CAPABILITY MATURITY MODEL FOR COMPLEX PRODUCT SYSTEMS (COPS) PROJECTS
- RISK MANAGEMENT IN A MULTI-PROJECT ENVIRONMENT: AN APPROACH TO MANAGE PORTFOLIO RISKS
- RISK MANAGEMENT IN ERP PROJECT INTRODUCTION: REVIEW OF THE LITERATURE
- RISK MANAGEMENT THROUGH ARCHITECTURE DESIGN
- RISK MANAGEMENT: LESSONS FROM SIX CONTINENTS
- RISK MODELING OF DEPENDENCE AMONG PROJECT TASK DURATIONS
- SADAAM: SOFTWARE AGENT DEVELOPMENT AN AGILE METHODOLOGY. LADS/DURHAM AGENTS
- SAFETY GUIDELINES FOR CONDUCTING MAGNETIC RESONANCE IMAGING (MRI) EXPERIMENTS INVOLVING HUMAN SUBJECTS
- SCIENTIFIC RESEARCH ONTOLOGY TO SUPPORT SYSTEMATIC REVIEW IN SOFTWARE ENGINEERING
- SEARCHING FOR "UNKNOWN UNKNOWNS."
- SIGNIFICANCE OF PROJECT MANAGEMENT PERFORMANCE ASSESSMENT (PMPA) MODEL
- SIMSE: A SOFTWARE ENGINEERING SIMULATION ENVIRONMENT FOR SOFTWARE PROCESS EDUCATION
- SIMULATOR FOR SOFTWARE MAINTAINABILITY
- SOFTWARE DEVELOPMENT RISK AND PROJECT PERFORMANCE MEASUREMENT:
 EVIDENCE IN KOREA

- SOFTWARE ENGINEERING FOR AUTOMOTIVE SYSTEMS: A ROADMAP
- SOFTWARE EXPORTS DEVELOPMENT IN COSTA RICA: POTENTIAL FOR POLICY REFORMS
- SOFTWARE MAINTENANCE PROJECT DELAYS PREDICTION USING BAYESIAN NETWORKS
- SOFTWARE PRODUCT INTEGRATION: A CASE STUDY-BASED SYNTHESIS OF REFERENCE MODELS
- SOFTWARE PROJECT ECONOMICS: A ROADMAP
- SOFTWARE PROJECT MANAGEMENT ANTI-PATTERNS
- SOFTWARE PROJECT MANAGEMENT WITH GAS
- SOFTWARE PROJECT RISK ASSESSMENT BASED ON FUZZY LINGUISTIC MULTIPLE ATTRIBUTE DECISION MAKING
- SOFTWARE PROJECT RISK MANAGEMENT MODELING WITH NEURAL NETWORK AND SUPPORT VECTOR MACHINE APPROACHES
- SOFTWARE QUALITY AND IS PROJECT PERFORMANCE IMPROVEMENTS FROM SOFTWARE DEVELOPMENT PROCESS MATURITY AND IS IMPLEMENTATION STRATEGIES
- SOFTWARE REUSABILITY MODEL FOR PROCEDURE BASED DOMAIN-SPECIFIC SOFTWARE COMPONENTS
- SOFTWARE RISK IDENTIFICATION AND MITIGATION IN INCREMENTAL MODEL
- SOFTWARE RISK ASSESSMENT AND ESTIMATION MODEL
- SOFTWARE RISK MANAGEMENT BARRIERS: AN EMPIRICAL STUDY
- SOFTWARE SELF-HEALING USING COLLABORATIVE APPLICATION COMMUNITIES
- SPOTLIGHT BEST PRACTICES
- STATE OF THE PRACTICE: AN EXPLORATORY ANALYSIS OF SCHEDULE ESTIMATION AND SOFTWARE PROJECT SUCCESS PREDICTION
- STATIC VERIFICATION OF UML MODEL CONSISTENCY
- STAYING OPEN TO INTERPRETATION: ENGAGING MULTIPLE MEANINGS IN DESIGN AND EVALUATION
- STUDY 237: DEVELOPMENT AND USE OF QSARS FOR REGULATORY SCREENING AND PRIORITIZATION OF CHEMICALS: EVALUATION OF ENVIRONMENTAL AND TOXICOLOGICAL
- STUDY ON PROJECT RISK MANAGEMENT IN CHINA
- STUDY ON PROJECT RISK MANAGEMENT INFORMATION SYSTEM BASED ON PROGRESS SCHEDULE
- STUDY ON THE RISK MANAGEMENT MECHANISM OF THE ENGINEERING PROJECT DURING DECISION-MAKING STAGE
- SUBCONTRACTORS' BUSINESS RELATIONSHIPS AS RISK SOURCES IN PROJECT NETWORKS
- SUCCESS/FAILURE FACTORS AND PERFORMANCE MEASURES OF WEB-BASED CONSTRUCTION PROJECT MANAGEMENT SYSTEMS: PROFESSIONALS' VIEWPOINT
- SUPPORTING DECISION MAKING IN RISK MANAGEMENT THROUGH AN EVIDENCE-BASED INFORMATION SYSTEMS PROJECT RISK CHECKLIST
- SWIMMING WITH THE SHARKS: PERSPECTIVES ON PROFESSIONAL RISK TAKING
- TEAMWORK PATTERN OF PROJECT RISK MANAGEMENT BASED ON KNOWLEDGE REUSE
- TECH FIRMS RISK 'CATASTROPHIC' BREACHES OF DATA SECURITY
- THE APPLICATION OF FAULT TREE ANALYSIS IN SOFTWARE PROJECT RISK MANAGEMENT
- THE APPLICATION OF RISK MATRIX TO SOFTWARE PROJECT RISK MANAGEMENT
- THE APPLICATION-BASED DOMAIN ANALYSIS APPROACH AND ITS OBJECT-PROCESS METHODOLOGY IMPLEMENTATION
- THE BLUEPRINT OF A REFERENCE CRITICAL INFORMATION INFRASTRUCTURE ARCHITECTURE
- THE EFFECT OF INTERVENING CONDITIONS ON THE MANAGEMENT OF PROJECT RISK
- THE EFFECTS OF CHANGE CONTROL AND MANAGEMENT REVIEW ON SOFTWARE FLEXIBILITY AND PROJECT PERFORMANCE

- THE EFFECTS OF THE FORMAT OF SOFTWARE PROJECT BIDDING PROCESSES
- THE IMPACT OF AN AGILE METHODOLOGY ON THE WELL BEING OF DEVELOPMENT TEAMS
- THE IMPACT OF PROJECT PORTFOLIO MANAGEMENT ON INFORMATION TECHNOLOGY PROJECTS
- THE IMPACT OF PURITAN IDEOLOGY ON ASPECTS OF PROJECT MANAGEMENT
- THE IMPACTS OF USER REVIEW ON SOFTWARE RESPONSIVENESS: MODERATING REQUIREMENTS UNCERTAINTY
- THE IMPORTANCE OF 'PROCESS' IN RETHINKING PROJECT MANAGEMENT: THE STORY OF A UK GOVERNMENT-FUNDED RESEARCH NETWORK
- THE IMPORTANCE OF CONTEXT IN PROGRAMME MANAGEMENT: AN EMPIRICAL REVIEW OF PROGRAMME PRACTICES
- THE IMPORTANCE OF IS STAKEHOLDER PERSPECTIVES AND PERCEPTIONS TO REQUIREMENTS NEGOTIATION
- THE INFLUENCE OF CHECKLISTS AND ROLES ON SOFTWARE PRACTITIONER RISK PERCEPTION AND DECISION-MAKING
- THE INFLUENCE OF CHECKLISTS AND ROLES ON SOFTWARE PRACTITIONER RISK PERCEPTION AND DECISION-MAKING
- THE INFLUENCE OF EXPERIENCE AND INFORMATION SEARCH STYLES ON PROJECT RISK IDENTIFICATION PERFORMANCE
- THE MAKING OF TRIGGER AND THE AGILE ENGINEERING OF ARTIST-SCIENTIST COLLABORATION
- THE MARICOPA INTEGRATED RISK ASSESSMENT PROJECT: A NEW WAY OF LOOKING AT RISK
- THE P-FORM ORGANIZATION AND THE DYNAMICS OF PROJECT COMPETENCE: PROJECT EPOCHS IN ASEA/ABB, 1950–2000
- THE PROJECT ASSESSMENT BY SIMULATION TECHNIQUE
- THE PROJECT MANAGEMENT OFFICE AS AN ORGANISATIONAL INNOVATION
- THE RATIONAL CHOICE OF NOT APPLYING PROJECT RISK MANAGEMENT IN INFORMATION TECHNOLOGY PROJECTS
- THE RELATION OF REQUIREMENTS UNCERTAINTY AND STAKEHOLDER PERCEPTION GAPS TO PROJECT MANAGEMENT PERFORMANCE
- THE RISKS OF RISK MANAGEMENT
- THE ROLE OF INTUITION AND IMPROVISATION IN PROJECT MANAGEMENT
- THE ROLE OF MONITORING AND SHIRKING IN INFORMATION SYSTEMS PROJECT MANAGEMENT
- THE ROLE OF PROJECT MANAGEMENT IN UNIVERSITY COMPUTING RESOURCE DEPARTMENTS
- THE ROLE OF SOFTWARE PROCESS SIMULATION MODELING IN SOFTWARE RISK MANAGEMENT: A SYSTEMATIC REVIEW
- THE SUBLIMINAL CHARACTERISTICS OF PROJECT MANAGERS: AN EXPLORATORY STUDY OF OPTIMISM OVERCOMING CHALLENGE IN THE PROJECT MANAGEMENT WORK ENVIRONMENT
- TIME-LINE BASED MODEL FOR SOFTWARE PROJECT SCHEDULING WITH GENETIC ALGORITHMS
- TOWARDS A PHILOSOPHY OF SOFTWARE DEVELOPMENT: 40 YEARS AFTER THE BIRTH OF SOFTWARE ENGINEERING
- TOWARDS DISCOVERING DATA CENTER GENOME USING SENSOR NETS
- TRIGGERS FOR A FLEXIBLE APPROACH TO PROJECT MANAGEMENT WITHIN UK FINANCIAL SERVICES
- UNCOVERING THE TRENDS IN PROJECT MANAGEMENT: JOURNAL EMPHASES OVER THE LAST 10 YEARS
- UNDERSTANDING INTERNALLY GENERATED RISKS IN PROJECTS
- UNDERSTANDING THE EFFECTS OF REQUIREMENTS VOLATILITY IN SOFTWARE ENGINEERING BY USING ANALYTICAL MODELING AND SOFTWARE PROCESS SIMULATION

- UNDERSTANDING THE EFFECTS OF REQUIREMENTS VOLATILITY IN SOFTWARE ENGINEERING BY USING ANALYTICAL MODELING AND SOFTWARE PROCESS SIMULATION
- URBANSIM: USING SIMULATION TO INFORM PUBLIC DELIBERATION AND DECISION MAKING
- USE OF WRITING WITH SYMBOLS 2000 SOFTWARE TO FACILITATE EMERGENT LITERACY DEVELOPMENT
- USING A FORMAL METHOD TO MODEL SOFTWARE DESIGN IN XP PROJECTS
- USING A RISK-BASED APPROACH TO PROJECT SCHEDULING: A CASE ILLUSTRATION FROM SEMICONDUCTOR MANUFACTURING
- USING COTS COMPONENTS IN SOFTWARE DEVELOPMENT
- USING PLANNING POKER FOR COMBINING EXPERT ESTIMATES IN SOFTWARE PROJECTS
- USING SOLARIS™ OPERATING SYSTEM SECURITY TO ADDRESS PAYMENT CARD INDUSTRY (PCI) DSS COMPLIANCE: A SYSTEMIC APPROACH TO SECURITY
- USING THE INCREMENTAL COMMITMENT MODEL TO INTEGRATE SYSTEM ACQUISITION, SYSTEMS ENGINEERING, AND SOFTWARE ENGINEERING
- VIGILNET: AN INTEGRATED SENSOR NETWORK SYSTEM FOR ENERGY-EFFICIENT SURVEILLANCE
- WEIGHTING THE RISKS
- WHAT ARE EMERGENT PROPERTIES AND HOW DO THEY AFFECT THE ENGINEERING OF COMPLEX SYSTEMS? RELIABILITY ENGINEERING AND SYSTEM SAFETY
- WHAT DO SOFTWARE PRACTITIONERS REALLY THINK ABOUT PROJECT SUCCESS: A CROSS-CULTURAL COMPARISON
- WHAT LIBRARIANS CAN LEARN FROM GAMERS
- YUCCA MOUNTAIN'S FUTURE EXAMINED

APÊNDICE E

COLETÂNEA DIGITAL DAS FONTES-PRIMÁRIAS PRÉ-SELECIONADAS NA REVISÃO SISTEMÁTICA E RELAÇÃO DE ASSOCIAÇÃO ENTRE ARTIGOS E CORRESPONDENTES ARQUIVOS

• COLETÂNEA EM CD

• RELAÇÃO DE ASSOCIAÇÃO ENTRE ARTIGOS E CORRESPONDENTES ARQUIVOS NO CD

ESTUDOS EMPREGADOS NA REVISÃO SISTI	EMÁTICA
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
DELIBERATE IGNORANCE IN PROJECT RISK MANAGEMENT	001.PDF
A PROJECT CONTINGENCY FRAMEWORK BASED ON UNCERTAINTY AND ITS CONSEQUENCES	
EVOLUTION OF PROJECT MANAGEMENT RESEARCH AS EVIDENCED BY PAPERS PUBLISHED IN THE INTERNATIONAL JOURNAL OF PROJECT MANAGEMENT	
THE ROLE OF MONITORING AND SHIRKING IN INFORMATION SYSTEMS PROJECT MANAGEMENT	004.PDF
ORGANIZING FOR INNOVATION IN A PRODUCT DEVELOPMENT PROJECT: COMBINING INNOVATIVE AND RESULT ORIENTED WAYS OF WORKING – A CASE STUDY	
IMPROVING PROJECT OUTCOMES THROUGH OPERATIONAL RELIABILITY: A CONCEPTUAL MODEL	006.PDF
AN INTEGRATED REAL OPTIONS EVALUATING MODEL FOR INFORMATION TECHNOLOGY PROJECTS UNDER MULTIPLE RISKS	007.PDF
MANAGING RISKS IN MEGA DEFENSE ACQUISITION PROJECTS: PERFORMANCE, POLICY, AND OPPORTUNITIES	008.PDF
WHEN PROJECT-BASED MANAGEMENT CAUSES DISTRESS AT WORK	009.PDF
PROJECT MANAGEMENT AND NATIONAL CULTURE: A DUTCH-FRENCH CASE STUDY	010.PDF
PROJECT MANAGEMENT DEPLOYMENT: THE ROLE OF CULTURAL FACTORS	011.PDF
PROJECT MANAGEMENT DEPLOYMENT: THE ROLE OF CULTURAL FACTORS	012.PDF
EVALUATING REAL OPTIONS FOR MITIGATING TECHNICAL RISK IN PUBLIC SECTOR R&D ACQUISITIONS	013.PDF
SIGNIFICANCE OF PROJECT MANAGEMENT PERFORMANCE ASSESSMENT (PMPA) MODEL	014.PDF
A COMPREHENSIVE MODEL FOR SELECTING INFORMATION SYSTEM PROJECT UNDER FUZZY ENVIRONMENT	015.PDF
A COMPREHENSIVE MODEL FOR SELECTING INFORMATION SYSTEM PROJECT UNDER FUZZY ENVIRONMENT	016.PDF
CRITICAL CHAIN AND RISK ANALYSIS APPLIED TO HIGH-RISK INDUSTRY MAINTENANCE: A CASE STUDY	017.PDF
PROJECT MANAGEMENT STANDARDS – DIFFUSION AND APPLICATION IN GERMANY AND SWITZERLAND	018.PDF
THE P-FORM ORGANIZATION AND THE DYNAMICS OF PROJECT COMPETENCE: PROJECT EPOCHS IN ASEA/ABB, 1950–2000	019.PDF
A MULTIPLE CRITERIA DECISION MODEL FOR ASSIGNING PRIORITIES TO ACTIVITIES IN PROJECT MANAGEMENT	020.PDF
RETHINKING IT PROJECT MANAGEMENT: EVIDENCE OF A NEW MINDSET AND ITS IMPLICATIONS	021.PDF
TOWARDS A CONCEPTUAL REFERENCE MODEL FOR PROJECT MANAGEMENT INFORMATION SYSTEMS	022.PDF
FOUNDATIONS OF PROGRAM MANAGEMENT: A BIBLIOMETRIC VIEW	•
EDITORIAL: CHANGE MANAGEMENT AND PROJECTS	024.PDF
EDITORIAL: ACHIEVING IT PROJECT SUCCESS THROUGH CONTROL, MEASUREMENT, MANAGING EXPECTATIONS, AND TOP	

ESTUDOS EMPREGADOS NA REVISÃO SISTE	EMÁTICA
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
MANAGEMENT SUPPORT	
MANAGING USER EXPECTATIONS ON SOFTWARE PROJECTS: LESSONS FROM THE TRENCHES	026.PDF
TOP MANAGEMENT SUPPORT: MANTRA OR NECESSITY?	027.PDF
AN EXPERIMENTAL INVESTIGATION OF FACTORS INFLUENCING PERCEIVED CONTROL OVER A FAILING IT PROJECT	028.PDF
SUCCESS IN IT PROJECTS: A MATTER OF DEFINITION?	029.PDF
MANAGING PUBLIC-PRIVATE MEGAPROJECTS: PARADOXES, COMPLEXITY, AND PROJECT DESIGN	030.PDF
FUZZY CRITICAL CHAIN METHOD FOR PROJECT SCHEDULING UNDER RESOURCE CONSTRAINTS AND UNCERTAINTY	031.PDF
EDITORIAL: PROJECTS IN INNOVATION, INNOVATION IN PROJECTS SELECTED PAPERS FROM THE IRNOP VIII CONFERENCE	032.PDF
EXPLORATION AND PROJECT MANAGEMENT	033.PDF
MANAGING ROBUST DEVELOPMENT PROCESS FOR HIGH-TECH STARTUPS THROUGH MULTI-PROJECT LEARNING: THE CASE OF TWO EUROPEAN START-UPS	
MANAGING ROBUST DEVELOPMENT PROCESS FOR HIGH-TECH STARTUPS THROUGH MULTI-PROJECT LEARNING: THE CASE OF TWO EUROPEAN START-UPS	
THE PROJECT MANAGEMENT OFFICE AS AN ORGANISATIONAL INNOVATION	036.PDF
INNOVATION IN PROJECT MANAGEMENT: VOICES OF RESEARCHERS	037.PDF
BUILDING KNOWLEDGE IN PROJECTS: A PRACTICAL APPLICATION OF SOCIAL CONSTRUCTIVISM TO INFORMATION SYSTEMS DEVELOPMENT	
THE BALANCE BETWEEN ORDER AND CHAOS IN MULTI-PROJECT FIRMS: A CONCEPTUAL MODEL	039.PDF
PROJECT PORTFOLIO MANAGEMENT – THERE'S MORE TO IT THAN WHAT MANAGEMENT ENACTS	040.PDF
ASSESSING RISK AND UNCERTAINTY INHERENT IN CHINESE HIGHWAY PROJECTS USING AHP	041.PDF
ASSESSING RISK AND UNCERTAINTY INHERENT IN CHINESE HIGHWAY PROJECTS USING AHP	042.PDF
PROJECT RISK MANAGEMENT PRACTICE: THE CASE OF A SOUTH AFRICAN UTILITY COMPANY	043.PDF
PROJECT RISK MANAGEMENT PRACTICE: THE CASE OF A SOUTH AFRICAN UTILITY COMPANY	044.PDF
PROJECT MANAGEMENT INFORMATION SYSTEMS: AN EMPIRICAL STUDY OF THEIR IMPACT ON PROJECT MANAGERS AND PROJECT SUCCESS	045.PDF
PROJECT MANAGEMENT OF UNEXPECTED EVENTS	046.PDF
IN SEARCH OF OPPORTUNITY MANAGEMENT: IS THE RISK MANAGEMENT PROCESS ENOUGH?	047.PDF
THE APPLICATION OF COGNITIVE MAPPING METHODOLOGIES IN PROJECT MANAGEMENT RESEARCH	048.PDF
THE SUBLIMINAL CHARACTERISTICS OF PROJECT MANAGERS: AN EXPLORATORY STUDY OF OPTIMISM OVERCOMING CHALLENGE IN THE PROJECT MANAGEMENT WORK ENVIRONMENT	
'CULTURAL' DIFFERENCES IN PROJECT RISK PERCEPTION: AN EMPIRICAL COMPARISON OF CHINA AND CANADA	050.PDF
A REDEFINITION OF THE PROJECT RISK PROCESS: USING	051.PDF

ESTUDOS EMPREGADOS NA REVISÃO SISTE	EMÁTICA
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
VULNERABILITY TO OPEN UP THE EVENT-CONSEQUENCE LINK	
MANAGERIAL PERCEPTIONS OF POLITICAL RISK IN INTERNATIONAL PROJECTS	052.PDF
BOOK REVIEW: D. VAN WELL-STAM, F. LINDENAAR, S. VAN	
KINDEREN, B. VAN DEN BUNT, PROJECT RISK MANAGEMENT: AN ESSENTIAL TOOL FOR MANAGING AND CONTROLLING PROJECTS, KOGAN PAGE, LONDON, 2004, SOFT BACK, 180 PP, £19.95, ISBN 0-7494-4275-1	
APPLICATION OF A FUZZY BASED DECISION MAKING METHODOLOGY TO CONSTRUCTION PROJECT RISK ASSESSMENT	054.PDF
APPLICATION OF A FUZZY BASED DECISION MAKING METHODOLOGY TO CONSTRUCTION PROJECT RISK ASSESSMENT	055.PDF
TRIGGERS FOR A FLEXIBLE APPROACH TO PROJECT MANAGEMENT WITHIN UK FINANCIAL SERVICES	056.PDF
OPTIMIZING THE DEVELOPMENT SCHEDULE OF RESORT PROJECTS BY INTEGRATING SIMULATION AND GENETIC ALGORITHM	057.PDF
BOOK REVIEW: PETER J. EDWARDS, PAUL A. BOWEN, RISK MANAGEMENT IN PROJECT ORGANISATIONS, UNIVERSITY OF NEW SOUTH WALES PRESS, SYDNEY, 2005, SOFT BACK, 189 PP, \$39.95, ISBN 0 6840-574-4	
AN EPISTEMOLOGICAL EVALUATION OF RESEARCH INTO PROJECTS AND THEIR MANAGEMENT: METHODOLOGICAL ISSUES	059.PDF
A GAME THEORY APPROACH FOR THE ALLOCATION OF RISKS IN TRANSPORT PUBLIC PRIVATE PARTNERSHIPS	060.PDF
THE CHANGING PARADIGMS OF PROJECT MANAGEMENT	061.PDF
MANAGING VALUE AS A MANAGEMENT STYLE FOR PROJECTS	062.PDF
INTEGRATING INFORMATION TECHNOLOGY IN THE CONSTRUCTION INDUSTRY: TECHNOLOGY READINESS ASSESSMENT OF MALAYSIAN CONTRACTORS	063.PDF
THE USE OF INFORMATION TECHNOLOGY BY THE QUANTITY SURVEYING PROFESSION IN HONG KONG	064.PDF
EDITORIAL: WHAT DO WE WANT FROM A THEORY OF PROJECT MANAGEMENT? A RESPONSE TO RODNEY TURNER	065.PDF
PERSPECTIVES ON PROJECT MANAGEMENT	066.PDF
THE IMPACT OF PURITAN IDEOLOGY ON ASPECTS OF PROJECT MANAGEMENT	067.PDF
LEARNING WITHIN PROJECT PRACTICE: COGNITIVE STYLES EXPOSED	068.PDF
THE IMPORTANCE OF CONTEXT IN PROGRAMME MANAGEMENT: AN EMPIRICAL REVIEW OF PROGRAMME PRACTICES	069.PDF
THE IMPORTANCE OF CONTEXT IN PROGRAMME MANAGEMENT: AN EMPIRICAL REVIEW OF PROGRAMME PRACTICES	070.PDF
EDITORIAL: SPECIAL ISSUE ON RETHINKING PROJECT MANAGEMENT (EPSRC NETWORK 2004–2006)	071.PDF
THE IMPORTANCE OF 'PROCESS' IN RETHINKING PROJECT MANAGEMENT: THE STORY OF A UK GOVERNMENT-FUNDED RESEARCH NETWORK	072.PDF
RETHINKING PROJECT MANAGEMENT: RESEARCHING THE ACTUALITY OF PROJECTS	073.PDF
EDITORIAL: GOVERNANCE ISSUES IN PUBLIC PRIVATE PARTNERSHIPS	074.PDF
ROLE OF PUBLIC PRIVATE PARTNERSHIPS TO MANAGE RISKS IN	075.PDF

ESTUDOS EMPREGADOS NA REVISÃO SISTE	EMÁTICA
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
PUBLIC SECTOR PROJECTS IN HONG KONG	
STAKEHOLDER MANAGEMENT FOR PUBLIC PRIVATE PARTNERSHIPS	076.PDF
GOOD PROJECT GOVERNANCE FOR PROPER RISK ALLOCATION IN PUBLIC-PRIVATE PARTNERSHIPS IN INDONESIA	077.PDF
THE ROLE OF INTUITION AND IMPROVISATION IN PROJECT MANAGEMENT	078.PDF
A TWO-WAY INFLUENCE BETWEEN BUSINESS STRATEGY AND PROJECT MANAGEMENT	079.PDF
RISK AVOIDANCE IN BIDDING FOR SOFTWARE PROJECTS BASED ON LIFE CYCLE MANAGEMENT THEORY	080.PDF
THE EFFECTS OF THE FORMAT OF SOFTWARE PROJECT BIDDING PROCESSES	081.PDF
PROJECT OVERLOAD: AN EXPLORATORY STUDY OF WORK AND MANAGEMENT IN MULTI-PROJECT SETTINGS	082.PDF
KEY POINTS OF CONTENTION IN FRAMING ASSUMPTIONS FOR RISK AND UNCERTAINTY MANAGEMENT	083.PDF
CRITICAL DETERMINANTS OF PROJECT COORDINATION	084.PDF
A LIFE CYCLE EVALUATION OF CHANGE IN AN ENGINEERING ORGANIZATION: A CASE STUDY	085.PDF
DEFINING SUCCESS FOR SOFTWARE PROJECTS: AN EXPLORATORY REVELATION	086.PDF
DATA MINING MODEL FOR IDENTIFYING PROJECT PROFITABILITY VARIABLES	087.PDF
PREDICTING PROJECT PERFORMANCE THROUGH NEURAL NETWORKS	088.PDF
PROJECT MANAGEMENT EFFECTIVENESS IN PROJECT-ORIENTED BUSINESS ORGANIZATIONS	089.PDF
UNCOVERING THE TRENDS IN PROJECT MANAGEMENT: JOURNAL EMPHASES OVER THE LAST 10 YEARS	090.PDF
INTERPRETING AN ERP-IMPLEMENTATION PROJECT FROM A STAKEHOLDER PERSPECTIVE	091.PDF
MANAGEMENT OF FLEXIBILITY IN PROJECTS	092.PDF
UNDERSTANDING INTERNALLY GENERATED RISKS IN PROJECTS	093.PDF
INTERVENING CONDITIONS ON THE MANAGEMENT OF PROJECT RISK: DEALING WITH UNCERTAINTY IN INFORMATION TECHNOLOGY PROJECTS	
CLIENT VERSUS CONTRACTOR PERSPECTIVES ON PROJECT SUCCESS CRITERIA	095.PDF
THE ROLE OF PROJECT MANAGEMENT IN UNIVERSITY COMPUTING RESOURCE DEPARTMENTS	096.PDF
MANAGING TEAM ENTREES AND WITHDRAWALS DURING THE PROJECT LIFE CYCLE	097.PDF
MANAGING PROJECT EXPECTATIONS IN HUMAN SERVICES INFORMATION SYSTEMS IMPLEMENTATIONS: THE CASE OF HOMELESS MANAGEMENT INFORMATION SYSTEMS	
THE IMPACT OF PROJECT PORTFOLIO MANAGEMENT ON INFORMATION TECHNOLOGY PROJECTS	099.PDF
DECISION SUPPORT SYSTEM FOR SELECTING THE PROPER PROJECT DELIVERY METHOD USING ANALYTICAL HIERARCHY PROCESS (AHP)	100.PDF
PREDICTING SOFTWARE DEFECTS IN VARYING DEVELOPMENT LIFECYCLES USING BAYESIAN NETS	101.PDF

ESTUDOS EMPREGADOS NA REVISÃO SISTE	EMÁTICA
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
COLLABORATION IN SOFTWARE ENGINEERING: A ROADMAP	102.PDF
DISTRIBUTED SCRUM: AGILE PROJECT MANAGEMENT WITH OUTSOURCED DEVELOPMENT TEAMS	103.PDF
USING THE INCREMENTAL COMMITMENT MODEL TO INTEGRATE SYSTEM ACQUISITION, SYSTEMS ENGINEERING, AND SOFTWARE ENGINEERING	
SOFTWARE PROJECT ECONOMICS: A ROADMAP	105.PDF
PROJECT DATA INCORPORATING QUALITATIVE FACTS FOR IMPROVED SOFTWARE DEFECT PREDICTION	106.PDF
SOFTWARE DEVELOPMENT RISK AND PROJECT PERFORMANCE MEASUREMENT: EVIDENCE IN KOREA	107.PDF
AN INFORMATION SYSTEMS DESIGN PRODUCT THEORY FOR SOFTWARE PROJECT ESTIMATION AND MEASUREMENT SYSTEMS	108.PDF
AN INTELLIGENT EARLY WARNING SYSTEM FOR SOFTWARE QUALITY IMPROVEMENT AND PROJECT MANAGEMENT	109.PDF
OPTION-BASED RISK MANAGEMENT: A FIELD STUDY OF SEQUENTIAL IT INVESTMENT DECISIONS	110.PDF
STATE OF THE PRACTICE: AN EXPLORATORY ANALYSIS OF SCHEDULE ESTIMATION AND SOFTWARE PROJECT SUCCESS PREDICTION	
EVALUATING SOFTWARE PROJECT PORTFOLIO RISKS	112.PDF
SOFTWARE PROJECT MANAGEMENT WITH GAS	113.PDF
MOBILIZATION OF SOFTWARE DEVELOPERS: THE FREE SOFTWARE MOVEMENT	114.PDF
RATIONALE MANAGEMENT IN SOFTWARE ENGINEERING	115.PDF
VIGILNET: AN INTEGRATED SENSOR NETWORK SYSTEM FOR ENERGY-EFFICIENT SURVEILLANCE	116.PDF
EXPERIENCES BUILDING PLANETLAB	117.PDF
A FRESH LOOK AT THE RELIABILITY OF LONG-TERM DIGITAL STORAGE	118.PDF
A SURVEY OF DYNAMIC SPECTRUM ACCESS	119.PDF
HOW BODIES MATTER: FIVE THEMES FOR INTERACTION DESIGN	120.PDF
YALE: RAPID PROTOTYPING FOR COMPLEX DATA MINING TASKS	121.PS
HYPERMEDIA SUPPORT FOR ARGUMENTATION-BASED RATIONALE	122.PDF
SOFTWARE SELF-HEALING USING COLLABORATIVE APPLICATION COMMUNITIES	123.PDF
MANAGING LARGE-SCALE WORKFLOW EXECUTION FROM RESOURCE PROVISIONING TO PROVENANCE TRACKING: THE CYBERSHAKE EXAMPLE	
FLIGHT DATA RECORDER: MONITORING PERSISTENT-STATE INTERACTIONS TO IMPROVE SYSTEMS MANAGEMENT	125.PDF
BUMP IN THE ETHER: A FRAMEWORK FOR SECURING SENSITIVE USER INPUT	126.PDF
STAYING OPEN TO INTERPRETATION: ENGAGING MULTIPLE MEANINGS IN DESIGN AND EVALUATION	127.PDF
M.: MYONTOLOGY: THE MARRIAGE OF ONTOLOGY ENGINEERING AND COLLECTIVE INTELLIGENCE	128.PDF
AGENT-BASED PARTICIPATORY SIMULATIONS: MERGING MULTI- AGENT; SYSTEMS AND ROLE-PLAYING GAMES	129.PDF
THE BLUEPRINT OF A REFERENCE CRITICAL INFORMATION INFRASTRUCTURE ARCHITECTURE	130.PDF
MODELLING RISK AND IDENTIFYING COUNTERMEASURES IN	131.PDF

ESTUDOS EMPREGADOS NA REVISÃO SISTE	EMÁTICA
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
ORGANIZATIONS	
IDENTIFYING REFACTORINGS FROM SOURCECODE CHANGES	132.PDF
METAMODELING THE REQUIREMENTS OF WEB SYSTEMS	133.PDF
A VIEW OF 20TH AND 21ST CENTURY SOFTWARE ENGINEERING	134.PDF
CHALLENGES IN VISUAL DATA ANALYSIS	135.PDF
MDI - A RULE-BASED MULTI-DOCUMENT AND TOOL INTEGRATION APPROACH	136.PDF
SOFTWARE ENGINEERING FOR AUTOMOTIVE SYSTEMS: A ROADMAP	137.PDF
WHAT ARE EMERGENT PROPERTIES AND HOW DO THEY AFFECT THE ENGINEERING OF COMPLEX SYSTEMS? RELIABILITY ENGINEERING AND SYSTEM SAFETY	138.PDF
HOW DEVELOPERS COPY	139.PDF
APPLYING FEEDBACK CONTROL TO A REPLICA MANAGEMENT SYSTEM	140.PDF
THE IMPACT OF AN AGILE METHODOLOGY ON THE WELL BEING OF DEVELOPMENT TEAMS	141.PDF
DESIGNING COOPERATIVE IS: EXPLORING AND EVALUATING ALTERNATIVES	142.PDF
A SOCIO-TECHNICAL FRAMEWORK FOR SUPPORTING PROGRAMMERS	143.PDF
USING A FORMAL METHOD TO MODEL SOFTWARE DESIGN IN XP PROJECTS	144.PDF
THE MAKING OF TRIGGER AND THE AGILE ENGINEERING OF ARTIST-SCIENTIST COLLABORATION	145.PDF
MANAGING LARGE SCALE DATA FOR EARTHQUAKE SIMULATIONS	146.PDF
EXPERIENCES TRACKING AGILE PROJECTS: AN EMPIRICAL STUDY	147.PDF
URBANSIM: USING SIMULATION TO INFORM PUBLIC DELIBERATION AND DECISION MAKING	148.PDF
CREATIVITY VERSUS THE PERCEPTION OF CREATIVITY IN COMPUTATIONAL SYSTEMS	149.PDF
SIMSE: A SOFTWARE ENGINEERING SIMULATION ENVIRONMENT FOR SOFTWARE PROCESS EDUCATION	150.PDF
A COMPARISON OF UPPER ONTOLOGIES	151.PDF
PASTWATCH: A DISTRIBUTED VERSION CONTROL SYSTEM	152.PDF
COMMON SENSE REASONING - FROM CYC TO INTELLIGENT ASSISTANT	153.PDF
A DISTRIBUTED TABLING ALGORITHM FOR RULE BASED POLICY SYSTEMS	154.PDF
DRIVING AND MANAGING ARCHITECTURAL DECISIONS WITH ASPECTS	155.PDF
STATIC VERIFICATION OF UML MODEL CONSISTENCY	156.PDF
REASONING SUPPORT FOR ONTOLOGY DESIGN	157.PDF
A POSTERIORI COMPLIANCE CONTROL	158.PDF
APPLYING REAL OPTIONS THINKING TO INFORMATION SECURITY IN NETWORKED ORGANIZATIONS	159.PDF
MODELING SAFETY CASE EVOLUTION - EXAMPLES FROM THE AIR TRAFFIC MANAGEMENT DOMAIN	160.PDF
SADAAM: SOFTWARE AGENT DEVELOPMENT AN AGILE METHODOLOGY. LADS/DURHAM AGENTS	161.PDF
EMPOWERING SOFTWARE MAINTAINERS WITH SEMANTIC WEB TECHNOLOGIES	162.PDF

ESTUDOS EMPREGADOS NA REVISÃO SISTI	EMÁTICA
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
EXPERIENCES WITH MARMOSET: DESIGNING AND USING AN ADVANCED SUBMISSION AND TESTING SYSTEM FOR PROGRAMMING COURSES	
FAURA. A DYNAMIC WORKFLOW MANAGEMENT SYSTEM FOR COORDINATION OF COOPERATIVE ACTIVITIES	164.PDF
INTEGRATING SECURITY AND USABILITY INTO THE REQUIREMENTS AND DESIGN PROCESS	165.PDF
DESIGN OF A MODELLING LANGUAGE FOR INFORMATION SYSTEM SECURITY RISK MANAGEMENT	166.PDF
A QUALITATIVE INVESTIGATION OF UML MODELING CONVENTIONS	167.PDF
AN APPROACH TO IMPROVING PARAMETRIC ESTIMATION MODELS IN THE CASE OF VIOLATION OF ASSUMPTIONS BASED UPON RISK ANALYSIS	
ADOPTING CURVILINEAR COMPONENT ANALYSIS TO IMPROVE SOFTWARE COST ESTIMATION ACCURACY. MODEL, APPLICATION STRATEGY, AND AN EXPERIMENTAL VERIFICATION	
LARGE SCALE DETECTION OF IRREGULARITIES IN ACCOUNTING DATA	170.PDF
MOAST AND USARSIM - A COMBINED FRAMEWORK FOR THE DEVELOPMENT AND TESTING OF AUTONOMOUS SYSTEMS	171.PDF
A PRIMER FOR REAL-TIME SIMULATION OF LARGE-SCALE NETWORKS	172.PDF
INFORMATION GOVERNANCE IN NHS'S NPFIT: A CASE FOR POLICY SPECIFICATION	173.PDF
MOTIVES FOR ESTABLISHING SHARED SERVICE CENTERS IN PUBLIC ADMINISTRATIONS	174.PDF
COLLABORATIVE MULTIDISCIPLINARY DESIGN IN VIRTUAL ENVIRONMENTS	175.PDF
THE IMPORTANCE OF IS STAKEHOLDER PERSPECTIVES AND PERCEPTIONS TO REQUIREMENTS NEGOTIATION	176.PDF
BALANCING AGILITY AND DISCIPLINE WITH XPRINCE	177.PDF
FORMAL ANALYSIS OF SOME SECURE PROCEDURES FOR CERTIFICATE DELIVERY	178.PDF
A COMPARATIVE EVALUATION OF THREE APPROACHES TO SPECIFYING SECURITY REQUIREMENTS	179.PDF
INTERACTION DESIGNERS ON EXTREME PROGRAMMING TEAMS: CASE STUDIES FROM THE REAL WORLD	180.PDF
THE ECONOMIC IMPACT OF SOFTWARE PROCESS VARIATIONS	181.PDF
PERSONAL RIGHTS MANAGEMENT,: TAMING CAMERAPHONES FOR INDIVIDUAL PRIVACY MANAGEMENT	182.PDF
A COLLABORATIVE APPROACH FOR REENGINEERING-BASED PRODUCT LINE SCOPING	183.PDF
NATURAL LANGUAGE TECHNOLOGY FOR INFORMATION INTEGRATION IN BUSINESS INTELLIGENCE	184.PDF
APPROPRIATE AGILE MEASUREMENTS: USING METRICS AND DIAGNOSTICS TO DELIVER BUSINESS VALUE	185.PDF
SENSOR SELECTION AND OPTIMIZATION FOR HEALTH ASSESSMENT OF AEROSPACE SYSTEMS	186.PDF
STRUCTURING SOFTWARE PROCESS METRICS – A HOLISTIC SEMANTIC NETWORK BASED OVERVIEW	187.PDF
A FULLY VIRTUAL MULTI-NODE 1553 BUS COMPUTER	188.PDF
RATIONAL CHOICE OF SECURITY MEASURES VIA MULTI- PARAMETER ATTACK TREES	189.PDF

ESTUDOS EMPREGADOS NA REVISÃO SISTI	EMÁTICA
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
ADVANCED MIXED REALITY TECHNOLOGIES FOR SURVEILLANCE AND RISK PREVENTION APPLICATIONS	190.PDF
APPROACHES FOR ENSURING SECURITY AND PRIVACY ON UNPLANNED UBIQUITOUS COMPUTING INTERACTIONS	191.PDF
METHODS AND GUIDELINES FOR THE DESIGN AND DEVELOPMENT OF DOMESTIC UBIQUITOUS COMPUTING APPLICATIONS	192.PDF
AN INTEGRATED SECURITY VERIFICATION AND SECURITY SOLUTION DESIGN TRADE-OFF ANALYSIS	193.PDF
SYSTEM MODELING FOR SYSTEMATIC DEVELOPMENT OF GROUPWARE APPLICATIONS ON THE TESTING MATURITY OF SOFTWARE PRODUCING	194.PDF
ORGANIZATIONS: DETAILED DATA AN INFORMATION SYSTEMS SECURITY RISK ASSESSMENT MODEL	195.PDF
UNDER DEMPSTER-SHAFER THEORY OF BELIEF FUNCTIONS A PERVASIVE COMPUTING SYSTEM FOR THE OPERATING ROOM	196.PDF
OF THE FUTURE COMMON REQUIREMENTS PROBLEMS, THEIR NEGATIVE	197.PDF
CONSEQUENCES, AND INDUSTRY BEST PRACTICES TO HELP SOLVE THEM	198.PDF
SOFTWARE COST ESTIMATION MODEL BASED ON INTEGRATION OF MULTIAGENT AND CASE-BASED REASONING	199.PDF
EXPERIENCES WITH GOAL-ORIENTED MODELING OF ORGANIZATIONAL CHANGE	200.PDF
DOCUMENTING THE PROGRESS OF THE SYSTEM DEVELOPMENT	201.PDF
DIRECT ANONYMOUS ATTESTATION (DAA): ENSURING PRIVACY WITH CORRUPT ADMINISTRATORS	202.PDF
THE LANDSCAPE OF CONCURRENT DEVELOPMENT	203.PDF
CALLABLE SWAPS, SNOWBALLS AND VIDEOGAMES	204.PDF
MAKE THE MOST OF YOUR TIME: HOW SHOULD THE ANALYST WORK WITH AUTOMATED TRACEABILITY TOOLS	205.PDF
PROJECT ENSAYO: A VIRTUAL EMERGENCY OPERATIONS CENTER FOR DISASTER MANAGEMENT RESEARCH, TRAINING, AND DISCOVERY	
3D FOREST STRUCTURE ANALYSIS FROM OPTICAL AND LIDAR DATA	207.PDF
IMPROVING THE CUSTOMER CONFIGURATION UPDATE PROCESS BY EXPLICITLY MANAGING SOFTWARE KNOWLEDGE	208.PDF
MEETING THE REQUIREMENTS AND LIVING UP TO EXPECTATIONS	209.PDF
ON THE IMPORTANCE OF TEACHING PROFESSIONAL ETHICS TO COMPUTER SCIENCE STUDENTS	210.PDF
ROBUST AND DATA-DRIVEN OPTIMIZATION: MODERN DECISION- MAKING UNDER UNCERTAINTY	211.PDF
IMPLEMENTING PERSISTENT IDENTIFIERS	212.PDF
TOWARDS DISCOVERING DATA CENTER GENOME USING SENSOR NETS	213.PDF
TOWARDS PARADIGMINDEPENDENT SOFTWARE ASSESSMENT	214.PDF
RISØ-R-1570(EN) A DEVELOPMENT PROCESS META-MODEL FOR WEB BASED EXPERT SYSTEMS: THE WEB ENGINEERING POINT OF VIEW	
PRIMARY RESPONSIBILITY	216.PDF
THE ROLE OF A NATIONAL LIBRARY IN SUPPORTING	217.PDF
FUTURE: A METHOD AND KNOWLEDGE-BASE	218.PDF

ESTUDOS EMPREGADOS NA REVISÃO SISTE	=MÁTICA
ESTUDOS EIVIFREGADOS NA REVISÃO SISTE	
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
PREFACE PURPOSE AUDIENCE BACKGROUND REVISIONS CONVENTIONS	219.PDF
TRADE STUDIES WITH UNCERTAIN INFORMATION	220.PDF
SAFETY GUIDELINES FOR CONDUCTING MAGNETIC RESONANCE IMAGING (MRI) EXPERIMENTS INVOLVING HUMAN SUBJECTS	221.PDF
RESEARCH STATEMENT	222.PDF
CAPITAL PROGRAMMING GUIDE	223.PDF
KEEP PERSONAL INFORMATION SAFE BRING LOGIC INTO PLAY DEDUCTIVE REASONING	224.PDF
SIMULATOR FOR SOFTWARE MAINTAINABILITY	225.PDF
AND MANAGEMENT	226.PDF
A STUDY OF CURATION AND PRESERVATION ISSUES IN THE ECRYSTALS DATA REPOSITORY AND PROPOSED FEDERATION	227.PDF
STUDY 237: DEVELOPMENT AND USE OF QSARS FOR REGULATORY SCREENING AND PRIORITIZATION OF CHEMICALS: EVALUATION OF ENVIRONMENTAL AND TOXICOLOGICAL	228.PDF
CRITICAL REVIEW OF STOCHASTIC SIMULATION LITERATURE AND APPLICATIONS FOR HEALTH ACTUARIES	229.PDF
PHASES OF PROJECT AND SCHEDULE ADDITIONAL NOTES MILESTONE DEADLINE WEIGHTING	230.PDF
TITLE SOFTWARE METRICS: TOWARD BUILDING PROXY MODELS.	231.PDF
IMAGE-GUIDED SURGERY AND MEDICAL ROBOTICS IN THE CRANIAL AREA	232.PDF
COMPUTER SYSTEM SAFETY AND HAZARD ANALYSIS	233.PDF
USING SOLARIS™ OPERATING SYSTEM SECURITY TO ADDRESS PAYMENT CARD INDUSTRY (PCI) DSS COMPLIANCE: A SYSTEMIC APPROACH TO SECURITY	
FINAL REPORT FOR NCHRP REPORT 574: GUIDANCE FOR COST ESTIMATION AND MANAGEMENT FOR HIGHWAY PROJECTS DURING PLANNING, PROGRAMMING, AND PRECONSTRUCTION	235.PDF
PHILLIP BOXER BOXER RESEARCH LIMITED	236.PDF
AMERICAN ASSOCIATION OF STATE HIGHWAY	237.PDF
TEST PROCESS MATURITY MODELS – A HISTORICAL ACCOUNT	238.PDF
SAFETY RISK ASSESSMENT BY MONTE CARLO SIMULATION OF COMPLEX SAFETY CRITICAL OPERATIONS	239.PDF
A CLASSIFICATION OF UNCERTAINTY FOR EARLY PRODUCT AND SYSTEM DESIGN	240.PDF
DELIBERATE IGNORANCE IN PROJECT RISK MANAGEMENT	241.PDF
THE RATIONAL CHOICE OF NOT APPLYING PROJECT RISK MANAGEMENT IN INFORMATION TECHNOLOGY PROJECTS	242.PDF
MONITORING RISK RESPONSE ACTIONS FOR EFFECTIVE PROJECT RISK MANAGEMENT	243.PDF
A FUZZY APPROACH TO CONSTRUCTION PROJECT RISK ASSESSMENT	244.PDF
PROJECT RISK IDENTIFICATION AND ASSESSMENT SIMULTANEOUSLY USING MULTI-ATTRIBUTE GROUP DECISION MAKING TECHNIQUE	245.PDF
PROJECT RISK EVALUATION USING A FUZZY ANALYTIC HIERARCHY PROCESS: AN APPLICATION TO INFORMATION TECHNOLOGY PROJECTS	246.PDF
A STUDY OF ONTOLOGY-BASED RISK MANAGEMENT FRAMEWORK OF CONSTRUCTION PROJECTS THROUGH PROJECT LIFE CYCLE	247.PDF

ESTUDOS EMPREGADOS NA REVISÃO SISTI	EMÁTICA
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
DOES RISK MANAGEMENT CONTRIBUTE TO IT PROJECT SUCCESS? A META-ANALYSIS OF EMPIRICAL EVIDENCE	248.PDF
RISK MANAGEMENT CAPABILITY MATURITY MODEL FOR COMPLEX PRODUCT SYSTEMS (COPS) PROJECTS	249.PDF
MONITORING RISK RESPONSE ACTIONS FOR EFFECTIVE PROJECT RISK MANAGEMENT	250.PDF
EFFECT OF A VIRTUAL PROJECT TEAM ENVIRONMENT ON COMMUNICATION-RELATED PROJECT RISK	251.PDF
AN EMPIRICAL ANALYSIS OF RISK COMPONENTS AND PERFORMANCE ON SOFTWARE PROJECTS	252.PDF
RISK AVOIDANCE IN BIDDING FOR SOFTWARE PROJECTS BASED ON LIFE CYCLE MANAGEMENT THEORY	253.PDF
SOFTWARE DEVELOPMENT RISK AND PROJECT PERFORMANCE MEASUREMENT: EVIDENCE IN KOREA	254.PDF
EXPLORING THE RELATIONSHIP BETWEEN SOFTWARE PROJECT DURATION AND RISK EXPOSURE: A CLUSTER ANALYSIS	255.PDF
RISK AND RISK MANAGEMENT IN SOFTWARE PROJECTS: A REASSESSMENT	256.PDF
A COMPARATIVE STUDY OF IMPORTANT RISK FACTORS INVOLVED IN OFFSHORE AND DOMESTIC OUTSOURCING OF SOFTWARE DEVELOPMENT PROJECTS: A TWO-PANEL DELPHI STUDY	
SOFTWARE QUALITY AND IS PROJECT PERFORMANCE IMPROVEMENTS FROM SOFTWARE DEVELOPMENT PROCESS MATURITY AND IS IMPLEMENTATION STRATEGIES	258.PDF
THE IMPACT OF SOFTWARE PROCESS STANDARDIZATION ON SOFTWARE FLEXIBILITY AND PROJECT MANAGEMENT PERFORMANCE: CONTROL THEORY PERSPECTIVE	
MANAGEMENT COMPETENCES, NOT TOOLS AND TECHNIQUES: A GROUNDED EXAMINATION OF SOFTWARE PROJECT MANAGEMENT AT WM-DATA	
DOES RISK MANAGEMENT CONTRIBUTE TO IT PROJECT SUCCESS? A META-ANALYSIS OF EMPIRICAL EVIDENCE	261.PDF
LARGE ENGINEERING PROJECT RISK MANAGEMENT USING A BAYESIAN BELIEF NETWORK	262.PDF
A WEB-BASED INTEGRATED SYSTEM FOR INTERNATIONAL PROJECT RISK MANAGEMENT	263.PDF
MANAGING USER EXPECTATIONS ON SOFTWARE PROJECTS: LESSONS FROM THE TRENCHES	264.PDF
RISK MANAGEMENT IN ERP PROJECT INTRODUCTION: REVIEW OF THE LITERATURE	265.PDF
THE EFFECTS OF CHANGE CONTROL AND MANAGEMENT REVIEW ON SOFTWARE FLEXIBILITY AND PROJECT PERFORMANCE	266.PDF
KNOWLEDGE MANAGEMENT IN SOFTWARE ENGINEERING: A SYSTEMATIC REVIEW OF STUDIED CONCEPTS, FINDINGS AND RESEARCH METHODS USED	
GENETIC ALGORITHM BASED SOFTWARE INTEGRATION WITH MINIMUM SOFTWARE RISK	268.PDF
WHAT DO SOFTWARE PRACTITIONERS REALLY THINK ABOUT PROJECT SUCCESS: A CROSS-CULTURAL COMPARISON	269.PDF
EFFECT OF A VIRTUAL PROJECT TEAM ENVIRONMENT ON COMMUNICATION-RELATED PROJECT RISK	270.PDF
THE RELATION OF REQUIREMENTS UNCERTAINTY AND STAKEHOLDER PERCEPTION GAPS TO PROJECT MANAGEMENT PERFORMANCE	l l

ESTUDOS EMPREGADOS NA REVISÃO SISTE	EMÁTICA
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
AN EMPIRICAL ANALYSIS OF THE IMPACT OF SOFTWARE DEVELOPMENT PROBLEM FACTORS ON SOFTWARE MAINTAINABILITY	272.PDF
ANTECEDENTS AND CONSEQUENCES OF TEAM POTENCY IN SOFTWARE DEVELOPMENT PROJECTS	273.PDF
ANALYZING PROJECT MANAGEMENT RESEARCH: PERSPECTIVES FROM TOP MANAGEMENT JOURNALS	274.PDF
MINING SOFTWARE REPOSITORIES FOR COMPREHENSIBLE SOFTWARE FAULT PREDICTION MODELS	275.PDF
FIRE RISK MANAGEMENT SYSTEM FOR SAFE OPERATION OF LARGE ATMOSPHERIC STORAGE TANKS	276.PDF
AN EMPIRICAL INVESTIGATION OF THE DRIVERS OF SOFTWARE OUTSOURCING DECISIONS IN JAPANESE ORGANIZATIONS	277.PDF
DEVELOPMENT OF A TEAM MEASURE FOR TACIT KNOWLEDGE IN SOFTWARE DEVELOPMENT TEAMS	278.PDF
THE ROLE OF MONITORING AND SHIRKING IN INFORMATION SYSTEMS PROJECT MANAGEMENT	279.PDF
USING PLANNING POKER FOR COMBINING EXPERT ESTIMATES IN SOFTWARE PROJECTS	280.PDF
AN INTEGRATED REAL OPTIONS EVALUATING MODEL FOR INFORMATION TECHNOLOGY PROJECTS UNDER MULTIPLE RISKS	281.PDF
SOFTWARE PROJECT MANAGEMENT ANTI-PATTERNS	282.PDF
AN EXPERIMENTAL INVESTIGATION OF FACTORS INFLUENCING PERCEIVED CONTROL OVER A FAILING IT PROJECT	283.PDF
EDITORIAL: REFLECTIONS ON THE INFLUENCES OF THE COCOMO, SPIRAL AND THE WIN-WIN MODELS ON SOFTWARE PROJECT AND RISK MANAGEMENT	284.PDF
UNDERSTANDING THE EFFECTS OF REQUIREMENTS VOLATILITY IN SOFTWARE ENGINEERING BY USING ANALYTICAL MODELING AND SOFTWARE PROCESS SIMULATION	285.PDF
A FRAMEWORK FOR THE LIFE CYCLE MANAGEMENT OF INFORMATION TECHNOLOGY PROJECTS: PROJECTIT	286.PDF
THE IMPACTS OF SOFTWARE PRODUCT MANAGEMENT	287.PDF
IDENTIFICATION OF MORE RISKS CAN LEAD TO INCREASED OVER- OPTIMISM OF AND OVER-CONFIDENCE IN SOFTWARE DEVELOPMENT EFFORT ESTIMATES	288.PDF
THE IMPACTS OF USER REVIEW ON SOFTWARE RESPONSIVENESS: MODERATING REQUIREMENTS UNCERTAINTY	289.PDF
REDUCING SOFTWARE REQUIREMENT PERCEPTION GAPS THROUGH COORDINATION MECHANISMS	290.PDF
CHOQUET INTEGRAL BASED AGGREGATION APPROACH TO SOFTWARE DEVELOPMENT RISK ASSESSMENT	291.PDF
THE INFLUENCE OF CHECKLISTS AND ROLES ON SOFTWARE PRACTITIONER RISK PERCEPTION AND DECISION-MAKING	292.PDF
SOFTWARE MAINTENANCE PROJECT DELAYS PREDICTION USING BAYESIAN NETWORKS	293.PDF
USING A RISK-BASED APPROACH TO PROJECT SCHEDULING: A CASE ILLUSTRATION FROM SEMICONDUCTOR MANUFACTURING	294.PDF
PLANNING EFFORT AS AN EFFECTIVE RISK MANAGEMENT TOOL	295.PDF
TIME-LINE BASED MODEL FOR SOFTWARE PROJECT SCHEDULING WITH GENETIC ALGORITHMS	296.PDF
MODELING SOFTWARE TESTING COSTS AND RISKS USING FUZZY	297.PDF

ESTUDOS EMPREGADOS NA REVISÃO SISTI	EMÁTICA
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
LOGIC PARADIGM	
A HOLISTIC ARCHITECTURE ASSESSMENT METHOD FOR SOFTWARE PRODUCT LINES	298.PDF
BID MANAGEMENT: A SYSTEMS ENGINEERING APPROACH	299.PDF
ASSET MANAGEMENT TECHNIQUES	300.PDF
RESEARCH ON PROJECT SELECTION SYSTEM OF PRE- EVALUATION OF ENGINEERING DESIGN PROJECT BIDDING	301.PDF
MODELING BUILDING PROJECTS AS A BASIS FOR CHANGE CONTROL	302.PDF
RISKS IN OFFSHORE IT OUTSOURCING: A SERVICE PROVIDER PERSPECTIVE	303.PDF
MANAGING CUSTOMER RELATIONSHIP MANAGEMENT PROJECTS: THE CASE OF A LARGE FRENCH TELECOMMUNICATIONS COMPANY	304 PDF
HRM IN PROJECT GROUPS: THE EFFECT OF PROJECT DURATION ON TEAM DEVELOPMENT EFFECTIVENESS	305.PDF
FROM COMPARATIVE RISK ASSESSMENT TO MULTI-CRITERIA DECISION ANALYSIS AND ADAPTIVE MANAGEMENT: RECENT DEVELOPMENTS AND APPLICATIONS	
MANAGING RISK IN SEMICONDUCTOR MANUFACTURING: A STOCHASTIC PREDICTIVE CONTROL APPROACH	307.PDF
USING A RISK-BASED APPROACH TO PROJECT SCHEDULING: A CASE ILLUSTRATION FROM SEMICONDUCTOR MANUFACTURING	308.PDF
LARGE ENGINEERING PROJECT RISK MANAGEMENT USING A BAYESIAN BELIEF NETWORK	309.PDF
RISK MANAGEMENT IN ERP PROJECT INTRODUCTION: REVIEW OF THE LITERATURE	310.PDF
RISK AND RISK MANAGEMENT IN SOFTWARE PROJECTS: A REASSESSMENT	311.PDF
SCIENTIFIC RESEARCH ONTOLOGY TO SUPPORT SYSTEMATIC REVIEW IN SOFTWARE ENGINEERING	312.PDF
A SYSTEMATIC LITERATURE REVIEW TO IDENTIFY AND CLASSIFY SOFTWARE REQUIREMENT ERRORS	313.PDF
SOFTWARE PROJECT EFFORT ESTIMATION WITH VOTING RULES	314.PDF
PROJECT-BASED TRANSPLANT MANAGEMENT AS A RESEARCH STATISTICAL SUPPORT	315.PDF
RETHINKING PROJECT MANAGEMENT: RESEARCHING THE ACTUALITY OF PROJECTS	316.PDF
PROBABILISTIC SIMULATION FOR DEVELOPING LIKELIHOOD DISTRIBUTION OF ENGINEERING PROJECT COST	317.PDF
QUANTIFYING SCHEDULE RISK IN CONSTRUCTION PROJECTS USING BAYESIAN BELIEF NETWORKS	318.PDF
A PRODUCT MANAGEMENT CHALLENGE: CREATING SOFTWARE PRODUCT VALUE THROUGH REQUIREMENTS SELECTION	319.PDF
LIFE CYCLE ASSESSMENT OF WASTE MANAGEMENT SYSTEMS IN ITALIAN INDUSTRIAL AREAS: CASE STUDY OF 1ST MACROLOTTO OF PRATO	
RISK PROFILES AND DISTRIBUTED RISK ASSESSMENT	321.PDF
TEACHING DISCIPLINED SOFTWARE DEVELOPMENT	322.PDF
TOWARDS SECURITY REQUIREMENTS MANAGEMENT FOR SOFTWARE PRODUCT LINES: A SECURITY DOMAIN REQUIREMENTS ENGINEERING PROCESS	

ESTUDOS EMPREGADOS NA REVISÃO SISTEMÁTICA	
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
SOFTWARE ENGINEERING USING RATIONALE	324.PDF
SOFTWARE OPERATION TIME EVALUATION BASED ON MTM	325.PDF
A FRAMEWORK TO SUPPORT THE EVALUATION, ADOPTION AND IMPROVEMENT OF AGILE METHODS IN PRACTICE	326.PDF
STAFFING A SOFTWARE PROJECT: A CONSTRAINT SATISFACTION AND OPTIMIZATION-BASED APPROACH	327.PDF
SCIENTIFIC RESEARCH ONTOLOGY TO SUPPORT SYSTEMATIC REVIEW IN SOFTWARE ENGINEERING	328.PDF
EMPIRICAL STUDIES OF AGILE SOFTWARE DEVELOPMENT: A SYSTEMATIC REVIEW	329.PDF
IN SEARCH OF OPPORTUNITY MANAGEMENT: IS THE RISK MANAGEMENT PROCESS ENOUGH?	330.PDF
RELIABILITY ENGINEERING: OLD PROBLEMS AND NEW CHALLENGES	331.PDF
MANAGING TESTING ACTIVITIES IN TELECOMMUNICATIONS: A CASE STUDY	332.PDF
MODEL EXTENSION AND IMPROVEMENT FOR SIMULATOR-BASED SOFTWARE SAFETY ANALYSIS	333.PDF
THE SIGNIFICANCE OF INFORMATION FRAMEWORKS IN INTEGRATED RISK ASSESSMENT AND MANAGEMENT	334.PDF
AN ASPECT-ORIENTED METHODOLOGY FOR DESIGNING SECURE APPLICATIONS	335.PDF
PRODUCT-PORTFOLIO ORDERING ANALYSIS WITH UPDATE INFORMATION IN THE TWO-ECHELON: RISK DECISION-MAKING MODEL	336.PDF
PREPARING THE MIND FOR DYNAMIC MANAGEMENT	337.PDF
BAYESIAN INFERENCE IN PROBABILISTIC RISK ASSESSMENT—THE CURRENT STATE OF THE ART	338.PDF
STRUCTURED ANALOGIES FOR FORECASTING	339.PDF
RISK ASSESSMENT IN PRACTICE: A REAL CASE STUDY	340.PDF
IS RISK ANALYSIS A USEFUL TOOL FOR IMPROVING PROCESS SAFETY?	341.PDF
CAN EXPERTS REALLY ASSESS FUTURE TECHNOLOGY SUCCESS? A NEURAL NETWORK AND BAYESIAN ANALYSIS OF EARLY STAGE TECHNOLOGY PROPOSALS	
BAYESIAN BELIEF NETWORKS AS A TOOL FOR EVIDENCE-BASED CONSERVATION MANAGEMENT	343.PDF
INVESTIGATING THE EFFECT OF DATASET SIZE, METRICS SETS, AND FEATURE SELECTION TECHNIQUES ON SOFTWARE FAULT PREDICTION PROBLEM	344.PDF
A HOLISTIC APPROACH TO MANAGING SOFTWARE CHANGE IMPACT	345.PDF
RECENT DEVELOPMENTS IN LIFE CYCLE ASSESSMENT	346.PDF
IMPACT OF CENSORING ON LEARNING BAYESIAN NETWORKS IN SURVIVAL MODELLING	347.PDF
OPEN SOURCE SOFTWARE: AN INTRODUCTION	348.PDF
FAULT TREE ANALYSIS AND FUZZY EXPERT SYSTEMS: EARLY WARNING AND EMERGENCY RESPONSE OF LANDFILL OPERATIONS	
NEW SPORTS MANAGEMENT SOFTWARE: A NEEDS ANALYSIS BY A PANEL OF SPANISH EXPERTS	350.PDF
PROJECT RISK IDENTIFICATION AND ASSESSMENT SIMULTANEOUSLY USING MULTI-ATTRIBUTE GROUP DECISION	

ESTUDOS EMPREGADOS NA REVISÃO SISTEMÁTICA	
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
MAKING TECHNIQUE	
A FUZZY APPROACH TO CONSTRUCTION PROJECT RISK ASSESSMENT	352.PDF
RISK IDENTIFICATION AND ASSESSMENT FOR BUILD-OPERATE- TRANSFER PROJECTS: A FUZZY MULTI ATTRIBUTE DECISION MAKING MODEL	353.PDF
USER ADVOCACY AND INFORMATION SYSTEM PROJECT PERFORMANCE	354.PDF
TOWARDS A MULTI-DIMENSIONAL PROJECT PERFORMANCE MEASUREMENT SYSTEM	355.PDF
DRIVING HEALTH IT IMPLEMENTATION SUCCESS: INSIGHTS FROM THE CHRIST HOSPITAL	356.PDF
A STUDY OF PREPROJECT PLANNING AND PROJECT SUCCESS USING ANNS AND REGRESSION MODELS	337.FDF
A STUDY OF ONTOLOGY-BASED RISK MANAGEMENT FRAMEWORK OF CONSTRUCTION PROJECTS THROUGH PROJECT LIFE CYCLE	358.PDF
DOES RISK MANAGEMENT CONTRIBUTE TO IT PROJECT SUCCESS? A META-ANALYSIS OF EMPIRICAL EVIDENCE	339.PDF
PROJECT PORTFOLIO MANAGEMENT: AN INTEGRATED METHOD FOR RESOURCE PLANNING AND SCHEDULING TO MINIMIZE PLANNING/SCHEDULING-DEPENDENT EXPENSES	
HRM IN PROJECT GROUPS: THE EFFECT OF PROJECT DURATION ON TEAM DEVELOPMENT EFFECTIVENESS	301.FDF
THE TITANIC SUNK, SO WHAT? PROJECT MANAGER RESPONSE TO UNEXPECTED EVENTS	362.PDF
EFFECT OF A VIRTUAL PROJECT TEAM ENVIRONMENT ON COMMUNICATION-RELATED PROJECT RISK	303.PDF
RISK MANAGEMENT CAPABILITY MATURITY MODEL FOR COMPLEX PRODUCT SYSTEMS (COPS) PROJECTS	364.PDF
THE RATIONAL CHOICE OF NOT APPLYING PROJECT RISK MANAGEMENT IN INFORMATION TECHNOLOGY PROJECTS	303.PDF
QUANTIFYING IT ESTIMATION RISKS	366.PDF
SCHEDULING PROJECTS WITH STOCHASTIC ACTIVITY DURATION TO MAXIMIZE EXPECTED NET PRESENT VALUE	367.PDF
PREPARING SMALL SOFTWARE COMPANIES FOR TAILORED AGILE METHOD ADOPTION: MINIMALLY INTRUSIVE RISK ASSESSMENT	368.PDF
THE PATHOGEN CONSTRUCT IN RISK ANALYSIS	369.PDF
A PROJECT PORTFOLIO RISK-OPPORTUNITY IDENTIFICATION FRAMEWORK	370.PDF
RISK FACTORS IN THE COLLABORATIVE DEVELOPMENT OF MANAGEMENT INFORMATION SYSTEMS FOR NIGERIAN UNIVERSITIES	371.PDF
PROJECT RISK EVALUATION USING A FUZZY ANALYTIC HIERARCHY PROCESS: AN APPLICATION TO INFORMATION TECHNOLOGY PROJECTS	
PLANNING CUTS AUTOMATION PROJECT RISK.	373.PDF
HOW TO MEASURE THE EFFECTIVENESS OF RISK MANAGEMENT IN ENGINEERING DESIGN PROJECTS? PRESENTATION OF RMPASS: A NEW METHOD FOR ASSESSING RISK MANAGEMENT PERFORMANCE AND THE IMPACT OF KNOWLEDGE	374.PDF

ESTUDOS EMPREGADOS NA REVISÃO SISTEMÁTICA	
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
MANAGEMENT—INCLUDING A FEW RESULTS	
CONSTRUCTION PROJECT RISK ASSESSMENT USING EXISTING DATABASE AND PROJECT-SPECIFIC INFORMATION	375.PDF
RISK MANAGEMENT: LESSONS FROM SIX CONTINENTS	376.PDF
MEASURING PROJECT RISK	377.PDF
CTAN FOR RISK ASSESSMENTS USING MULTILEVEL STOCHASTIC NETWORKS	378.PDF
COMPLEXITY ADDS RISK	379.PDF
IT'S ALL IN THE TECHNIQUE!	380.PDF
RISK MODELING OF DEPENDENCE AMONG PROJECT TASK DURATIONS	381.PDF
GAO CALLS FOR BETTER TRACKING OF FEDERAL HIGH-RISK IT WORK	382.PDF
YUCCA MOUNTAIN'S FUTURE EXAMINED	383.PDF
LESSONS LEARNED: 12 STEPS TO PROJECT RISK REDUCTION	384.PDF
MODELING UNCERTAINTIES INVOLVED WITH SOFTWARE DEVELOPMENT WITH A STOCHASTIC PETRI NET	385.PDF
ORGANIZATION SECURITY METRICS: CAN ORGANIZATIONS PROTECT THEMSELVES?	386.PDF
THE PROJECT ASSESSMENT BY SIMULATION TECHNIQUE	387.PDF
PROBABILISTIC CONTROL OF PROJECT PERFORMANCE USING CONTROL LIMIT CURVES	388.PDF
ECONOMY PUTS IT INTO PENNY-PINCHING MODE	389.PDF
CASE STUDY IN COST-BASED RISK ASSESSMENT FOR SELECTING A STREAM RESTORATION DESIGN METHOD FOR A CHANNEL RELOCATION PROJECT	390.PDF
PROCESS AND RISK ANALYSIS TO REDUCE ERRORS IN CLINICAL LABORATORIES	391.PDF
MINIUMUM PAIN, MAXIMUM GAIN	392.PDF
SUCCESS/FAILURE FACTORS AND PERFORMANCE MEASURES OF WEB-BASED CONSTRUCTION PROJECT MANAGEMENT SYSTEMS: PROFESSIONALS' VIEWPOINT	
PROBLEMATIC PRACTICE IN INTEGRATED IMPACT ASSESSMENT: THE ROLE OF CONSULTANTS AND PREDICTIVE COMPUTER MODELS IN BURYING UNCERTAINTY	394.PDF
CAUTIOUS ANALYSIS OF PROJECT RISKS BY INTERVAL-VALUED INITIAL DATA	395.PDF
WEIGHTING THE RISKS	396.PDF
ELIMINATING THE RISKS TO STARTING UP YOUR PLANT RIGHT THE FIRST TIME	397.PDF
HIGH PERFORMANCE MANAGEMENT	398.PDF
SEARCHING FOR "UNKNOWN UNKNOWNS."	399.PDF
IMPLEMENTING LARGE PROJECTS IN SOFTWARE ENGINEERING COURSES	400.PDF
KNOWLEDGE SOURCING BEYOND BUZZ AND PIPELINES: EVIDENCE FROM THE VIENNA SOFTWARE SECTOR	401.PDF
25 TECHNOLOGIES THAT CHANGED THE DECADE	402.PDF
SOFTWARE EXPORTS DEVELOPMENT IN COSTA RICA: POTENTIAL FOR POLICY REFORMS	403.PDF

ESTUDOS EMPREGADOS NA REVISÃO SISTEMÁTICA	
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
COMPUTERS AND SOFTWARE BEAR TAX BREAKS AND PITFALLS	404.PDF
USE OF WRITING WITH SYMBOLS 2000 SOFTWARE TO FACILITATE EMERGENT LITERACY DEVELOPMENT	405.PDF
AGILE METHODS IN EUROPEAN EMBEDDED SOFTWARE DEVELOPMENT ORGANISATIONS: A SURVEY ON THE ACTUAL USE AND USEFULNESS OF EXTREME PROGRAMMING AND SCRUM	406.PDF
LESSONS FROM THE DEVELOPMENT OF COMPUTER BRAILLE CODE	407.PDF
INFORMATION TECHNOLOGY (IT) SYSTEM USERS MUST BE ALLOWED TO DECIDE ON THE FUTURE DIRECTION OF MAJOR NATIONAL IT INITIATIVES. BUT THE TASK OF REDISTRIBUTING POWER EQUALLY AMONGST STAKEHOLDERS WILL NOT BE AN EASY ONE	408.PDF
INTEGRATION OF SAFETY ANALYSIS IN MODEL-DRIVEN SOFTWARE DEVELOPMENT	409.PDF
INTEGRATION OF SAFETY ANALYSIS IN MODEL-DRIVEN SOFTWARE DEVELOPMENT	410.PDF
AN XML BASED METHODOLOGY TO MODEL AND USE SCENARIOS IN THE SOFTWARE DEVELOPMENT PROCESS	411.PDF
USING COTS COMPONENTS IN SOFTWARE DEVELOPMENT	412.PDF
TOWARDS A PHILOSOPHY OF SOFTWARE DEVELOPMENT: 40 YEARS AFTER THE BIRTH OF SOFTWARE ENGINEERING	413.PDF
A NOVEL APPROACH OF REQUIREMENT GATHERING AND ANALYSIS FOR AGENT ORIENTED SOFTWARE ENGINEERING (AOSE)	
THE APPLICATION-BASED DOMAIN ANALYSIS APPROACH AND ITS OBJECT-PROCESS METHODOLOGY IMPLEMENTATION	415.PDF
IMAGINING INDIA: SOFTWARE AND THE IDEOLOGY OF LIBERALISATION	416.PDF
SOFTWARE REUSABILITY MODEL FOR PROCEDURE BASED DOMAIN-SPECIFIC SOFTWARE COMPONENTS	417.PDF
FIVE TRENDS CHANGING THE FACE OF BI	418.PDF
CHANGE MANAGEMENT AND SOFTWARE REUSE SUPPORTIVE GENETIC INFORMATION SYSTEM DEVELOPMENT AND MAINTENANCE' MODEL	
A CASE STUDY OF THREE SOFTWARE PROJECTS: CAN SOFTWARE DEVELOPERS ANTICIPATE THE USABILITY PROBLEMS IN THEIR SOFTWARE?	
MANAGING REQUIREMENTS INTER-DEPENDENCY FOR SOFTWARE PRODUCT LINE DERIVATION	421.PDF
RISK ASSESSMENT	422.PDF
BUILDING A FRAMEWORK TO MEASURE AND MINIMIZE INFORMATION RISKS	423.PDF
A LIGHTWEIGHT TECHNIQUE FOR ASSESSING RISKS IN REQUIREMENTS ANALYSIS	424.PDF
CONTEMPLATING RISK ASSESSMENT: A CRITIQUE OF NRC (1983, 1996)	425.PDF
RISK ASSESSMENT OF OCCUPATIONAL STRESS: EXTENSIONS OF THE CLARKE AND COOPER APPROACH	426.PDF
RELATIVE RELIABILITY RISK ASSESSMENT APPLIED TO ORIGINAL DESIGNS DURING CONCEPTUAL DESIGN PHASE	427.PDF

ESTUDOS EMPREGADOS NA REVISÃO SISTEMÁTICA	
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
ANTICIPATION OF RISKS AND BENEFITS OF EMERGING TECHNOLOGIES: A PROSPECTIVE ANALYSIS METHOD	428.PDF
THE MARICOPA INTEGRATED RISK ASSESSMENT PROJECT: A NEW WAY OF LOOKING AT RISK	429.PDF
SPOTLIGHT BEST PRACTICES	430.PDF
FINESSING ON-DEMAND SOFTWARE DEALS	431.PDF
CONSTRUCTION PROJECT RISK ASSESSMENT USING EXISTING DATABASE AND PROJECT-SPECIFIC INFORMATION	432.PDF
AN ASSESSMENT OF INTEGRATED RISK ASSESSMENT	433.PDF
A LIGHTWEIGHT TECHNIQUE FOR ASSESSING RISKS IN REQUIREMENTS ANALYSIS	434.PDF
EVOLVING INFORMATION IN AN "EVIDENCE-BASED" WORLD: THEORETICAL CONSIDERATIONS	435.PDF
ONLINE STRATEGIC INTELLIGENCE	436.PDF
SWIMMING WITH THE SHARKS: PERSPECTIVES ON PROFESSIONAL RISK TAKING	437.PDF
TECH FIRMS RISK 'CATASTROPHIC' BREACHES OF DATA SECURITY	438.PDF
PROJECT-MANAGEMENT TOOLS FOR LIBRARIES: A PLANNING AND IMPLEMENTATION MODEL USING MICROSOFT PROJECT 2000	439.PDF
WHAT LIBRARIANS CAN LEARN FROM GAMERS	440.PDF
STUDY ON THE RISK MANAGEMENT MECHANISM OF THE ENGINEERING PROJECT DURING DECISION-MAKING STAGE	441.PDF
MODELLING PROJECT TRADE-OFF USING BAYESIAN NETWORKS	442.PDF
PROJECT CONTROL AND RISK MANAGEMENT FOR PROJECT SUCCESS: A SOUTH AFRICAN CASE STUDY	443.PDF
THE APPLICATION OF FAULT TREE ANALYSIS IN SOFTWARE PROJECT RISK MANAGEMENT	444.PDF
RESEARCH ON RISK MANAGEMENT OF COMMUNICATION PROJECTS BASED ON AHP	445.PDF
PROJECT RISK MANAGEMENT BASED ON A.D.HALL THREE- DIMENSION STRUCTURE ACTIVE-MATRIX THEORY	446.PDF
PROJECT RISK PATTERN BASED ON PATTERN ANALYSIS	447.PDF
INVESTIGATION OF GREY SYSTEM THEORY IN ENGINEERING PROJECT RISK MANAGEMENT	448.PDF
STUDY ON PROJECT RISK MANAGEMENT IN CHINA	449.PDF
FUZZY GROUP DECISION MAKING: A CASE USING FTOPSIS IN MEGA PROJECT RISK IDENTIFICATION AND ANALYSIS CONCURRENTLY	450.PDF
A STUDY OF SOFTWARE DEVELOPMENT PROJECT RISK MANAGEMENT	451.PDF
STUDY ON PROJECT RISK MANAGEMENT INFORMATION SYSTEM BASED ON PROGRESS SCHEDULE	452.PDF
NETWORK STRUCTURE TO TREE STRUCTURE: A NEW METHOD OF PROJECT RISK MANAGEMENT DECISION	453.PDF
MODEL IDENTIFICATION OF RISK MANAGEMENT SYSTEM	454.PDF
TEAMWORK PATTERN OF PROJECT RISK MANAGEMENT BASED ON KNOWLEDGE REUSE	455.PDF
LARGE ENGINEERING PROJECT RISK MANAGEMENT USING A BAYESIAN BELIEF NETWORK	456.PDF
SOFTWARE PROJECT RISK ASSESSMENT BASED ON FUZZY LINGUISTIC MULTIPLE ATTRIBUTE DECISION MAKING	457.PDF

ESTUDOS EMPREGADOS NA REVISÃO SISTEMÁTICA	
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
THE APPLICATION OF RISK MATRIX TO SOFTWARE PROJECT RISK MANAGEMENT	458.PDF
A CASE STUDY FOR THE IMPLEMENTATION OF AN AGILE RISK MANAGEMENT PROCESS IN MULTIPLE PROJECTS ENVIRONMENTS	459.PDF
RESEARCH ON MULTI-RISK ELEMENT TRANSMISSION MODEL OF ENTERPRISE PROJECT CHAIN	460.PDF
PROJECT, SYSTEMS AND RISK MANAGEMENT PROCESSES INTERACTIONS	461.PDF
PROJECT MANAGEMENT USING RISK IDENTIFICATION ARCHITECTURE PATTERN (RIAP) MODEL: A CASE STUDY ON A WEB-BASED APPLICATION	
THE RISKS OF RISK MANAGEMENT	463.PDF
SOFTWARE PROJECT RISK MANAGEMENT MODELING WITH NEURAL NETWORK AND SUPPORT VECTOR MACHINE APPROACHES	
COST AT RISK IN R&D PROJECT RISK MANAGEMENT	465.PDF
THE INFLUENCE OF EXPERIENCE AND INFORMATION SEARCH STYLES ON PROJECT RISK IDENTIFICATION PERFORMANCE	466.PDF
RISK AND RISK MANAGEMENT IN SOFTWARE PROJECTS: A REASSESSMENT	467.PDF
MONITORING RISK RESPONSE ACTIONS FOR EFFECTIVE PROJECT RISK MANAGEMENT	468.PDF
RISK MANAGEMENT APPLIED TO PROJECTS, PROGRAMS, AND PORTFOLIOS	469.PDF
A REVIEW OF TECHNIQUES FOR RISK MANAGEMENT IN PROJECTS	470.PDF
SUPPORTING DECISION MAKING IN RISK MANAGEMENT THROUGH AN EVIDENCE-BASED INFORMATION SYSTEMS PROJECT RISK CHECKLIST	
RISK MANAGEMENT IN A MULTI-PROJECT ENVIRONMENT: AN APPROACH TO MANAGE PORTFOLIO RISKS	472.PDF
THE EFFECT OF INTERVENING CONDITIONS ON THE MANAGEMENT OF PROJECT RISK	473.PDF
IRMAS – DEVELOPMENT OF A RISK MANAGEMENT TOOL FOR COLLABORATIVE MULTI-SITE, MULTI-PARTNER NEW PRODUCT DEVELOPMENT PROJECTS	
CAN A PROJECT CHAMPION BIAS PROJECT SELECTION AND, IF SO, HOW CAN WE AVOID IT?	475.PDF
PROJECT MANAGEMENT QUALITY AND THE VALUE OF FLEXIBLE STRATEGIES	476.PDF
SUBCONTRACTORS' BUSINESS RELATIONSHIPS AS RISK SOURCES IN PROJECT NETWORKS	477.PDF
COMPETENCE-BASED RISK PERCEPTION IN THE PROJECT BUSINESS	478.PDF
FACING KNOWLEDGE EVOLUTION IN SPACE PROJECT: A MULTI- VIEWPOINT APPROACH	479.PDF
EXISTING AND FUTURE STANDARDS FOR EVENT-DRIVEN BUSINESS PROCESS MANAGEMENT	480.PDF
THE ROLE OF SOFTWARE PROCESS SIMULATION MODELING IN SOFTWARE RISK MANAGEMENT: A SYSTEMATIC REVIEW	401.PDF
A VISUALIZATION TOOL FOR RISK ASSESSMENT IN SOFTWARE DEVELOPMENT	482.PDF
SOFTWARE RISK ASSESSMENT AND ESTIMATION MODEL	483.PDF

ESTUDOS EMPREGADOS NA REVISÃO SISTEMÁTICA	
FONTE-PRIMÁRIA	ARQUIVO NA COLETÂNEA EM CD
A REVIEW OF SOFTWARE RISK MANAGEMENT FOR SELECTION OF BEST TOOLS AND TECHNIQUES	484.PDF
ASSESSING SOFTWARE RISK MANAGEMENT PRACTICES IN A SMALL SCALE PROJECT	485.PDF
SOFTWARE RISK IDENTIFICATION AND MITIGATION IN INCREMENTAL MODEL	486.PDF
A RISK CONTROL OPTIMIZATION MODEL FOR SOFTWARE PROJECT	487.PDF
SOFTWARE RISK MANAGEMENT BARRIERS: AN EMPIRICAL STUDY	488.PDF
AN APPROACH TO FACILITATE SOFTWARE RISK IDENTIFICATION	489.PDF
THE INFLUENCE OF CHECKLISTS AND ROLES ON SOFTWARE PRACTITIONER RISK PERCEPTION AND DECISION-MAKING	490.PDF
A NEURAL NETWORKS APPROACH FOR SOFTWARE RISK ANALYSIS	491.PDF
RESEARCH ON OPTIMIZING SOFTWARE PROJECT PROCESS BASED RISK CONTROL METHOD	492.PDF
RISK MANAGEMENT THROUGH ARCHITECTURE DESIGN	493.PDF
UNDERSTANDING THE EFFECTS OF REQUIREMENTS VOLATILITY IN SOFTWARE ENGINEERING BY USING ANALYTICAL MODELING AND SOFTWARE PROCESS SIMULATION	
REDUCING SOFTWARE REQUIREMENT PERCEPTION GAPS THROUGH COORDINATION MECHANISMS	495.PDF
SOFTWARE PRODUCT INTEGRATION: A CASE STUDY-BASED SYNTHESIS OF REFERENCE MODELS	496.PDF
EMPIRICAL VALIDATION OF THE CLASSIC CHANGE CURVE ON A SOFTWARE TECHNOLOGY CHANGE PROJECT	497.PDF
INVESTIGATING THE RELATIONSHIP BETWEEN SCHEDULES AND KNOWLEDGE TRANSFER IN SOFTWARE TESTING	498.PDF
MULTIDIMENSIONAL SOFTWARE MONITORING APPLIED TO ERP	499.PDF
IMPROVING PROCESS DECISIONS IN COTS-BASED DEVELOPMENT VIA RISK-BASED PRIORITIZATION	500.PDF

Quadro 10 - Coletânea em CD dos Arquivos das Fontes-Primárias Utilizadas na Revisão Sistemática.