

Evaluation Criteria for Mobile
Functional Prototyping

Trabalho de Conclusão de Curso

Engenharia da Computação

Nome do Aluno: Paula Beserra Pithon
Orientador: Prof. Joabe Bezerra de Jesus Júnior

Universidade de Pernambuco
Escola Politécnica de Pernambuco

Graduação em Engenharia de Computação

Paula Beserra Pithon

EVALUATION CRITERIAS FOR MOBILE
FUNCTIONAL PROTOTYPING

Monografia apresentada como requisito parcial para obtenção do diploma de
Bacharel em Engenharia de Computação pela Escola Politécnica de Pernambuco –

Universidade de Pernambuco.

Recife, junho de 2019.

À minha família, marido e todos que apoiaram esta jornada.

Agradecimentos
Agradeço primeiramente a UPE pela oportunidade de estar inserida em uma

das universidades mais prestigiadas do país. Agradeço também a todos os

professores que cruzaram meu caminho, pelos ensinamentos e oportunidade de

crescer academicamente em cada matéria que aprendi. Também agradeço as

empresas que estive inserida nesses últimos cinco anos no qual pude aplicar todos

os conceitos aprendidos na prática; Manifesto Games e CESAR.

Agradeço imensamente a minha família, especialmente meus pais, que

esteve comigo me apoiando por todos esses anos, sendo sempre compreensivos e

motivadores. Agradeço também a meu namorado, Pedro, no qual não apenas me

apoiou, como também me auxiliou no processo de escrita deste TCC desde o

começo. Também agradeço a meus amigos que acompanharam esta jornada desde

o começo no qual estive junto em todos os semestres; Maria Paula, Thainá e

Gabriel.

A todos que estão tirando um tempo para ler esse trabalho meu muito

obrigada. Este TCC é para todos vocês!

Resumo

Este estudo tem como objetivo compreender as práticas atuais de

prototipagem no desenvolvimento de aplicações móveis e realizar uma análise dos

critérios de escolha utilizados atualmente pelos desenvolvedores. Para construir um

aplicativo, a prototipação é um passo essencial, afinal, reduz o risco do projeto e

aumenta a chance de sucesso. Existem duas principais metodologias de

prototipagem usadas atualmente; Protótipo Descartável, no qual o código da

aplicação é descartado, e Protótipo Evolutivo, no qual o projeto prototipado evolui

para o produto final. Como cada metodologia é usada em diferentes aplicativos,

definir uma estrutura de desenvolvimento móvel pode ser uma tarefa complexa para

desenvolvedores iniciantes, portanto, é importante entender o que faz com que

engenheiros experientes escolham frameworks específicos ao criar protótipos para

plataformas móveis. Devido à natureza deste objetivo de pesquisa, optamos por

conduzir e analisar uma pesquisa usando a estrutura de sete estágios do Kasunic. A

fim de reunir as informações necessárias para comparar essas metodologias de

prototipagem definimos 8 critérios de escolha comumente usados da literatura. O

questionário foi construído em duas seções; a primeira consistiu em questões

referentes à demografia da pesquisa e a segunda incorporou questões quantitativas

e qualitativas em relação a esses critérios pré-definidos. Distribuímos a pesquisa

entre os desenvolvedores de aplicativos móveis especializados em Recife, no Brasil,

por meio de plataformas populares e acabamos com mais de 50 respostas de todo o

país. Terminamos com uma análise detalhada dos dados sobre os critérios utilizados

pelos entrevistados e uma discussão com pontos de melhoria para o levantamento

distribuído.

Abstract
This study aims to gain an understanding of the current prototyping practices

in mobile app development and conduct an analysis of choice criteria currently used

by developers. In order to build an app, prototyping is an essential step, after all, it

reduces project risk and increases the likelihood of success of any software. There

are two main prototyping methodologies currently used; throw-away prototype, in

which the code of the application is discarded, and evolutionary prototype, in which

the prototyped project evolves into the final product. Since each prototyping

methodology is used in different applications, defining a mobile development

framework might be a complex task for beginner developers, therefore it is important

to understand what makes experienced engineers chose a specific development

frameworks when prototyping for mobile platforms. Due to the nature of this research

goal, we chose to conduct and analyse a survey using Kasunic's seven stage

framework. In order to gather the information we needed to compare these

prototyping methodologies, we defined 8 commonly used choice criterias from

literature. The questionnaire was built in two sections; the first consisted of questions

regarding the demographics of the research and the second incorporated quantitative

and qualitative questions regarding these predefined criterias. We distributed the

survey among expert mobile developers in Recife, Brazil, through popular platforms

and ended up with over 50 responses from all around the country. We ended up with

a detailed data analysis regarding criterias used by respondents and a discussion

with improvement points for the distributed survey.

Summary

List of Figures 10

List of Tables 12

List of Symbols and Abbreviations 13

Chapter 1 Introduction 14
1.1 Motivation
1.2 Goals 16
1.3 Document Structure 17

Chapter 2 Theoretical Background 19
2.1 Concepts 19

2.1.1 Mobile Development 21
2.1.2 Functional Prototyping 21

2.2 Related Work 22

Chapter 3 Survey Methodology 24
3.1 Modeling
3.2 Demographics of the Research 25
3.3 Building the Questionnaire 25

3.3.1 Evaluation Criteria 26
3.3.2 Questions 27

3.4 Release and Analysis 28

Chapter 4 Results 30
4.1 Respondents Overview 32
4.2 Data Analysis 33

4.2.1 Throw-away Prototype Data 33
4.2.2 Evolutionary Prototype Data 35

4.3 Discussion 37

Chapter 5 Conclusion 39
3.1 Future Work 39

References 41

A. Survey Questions 4 4

List of Figures
Figure 1. Mobile apps download growth from 2009 to 2017. 16

Figure 2. Comparison between Smartphone usage and Desktop usage . 21

Figure 3. Subdivisions in three large groups of mobile app development. 22

Figure 4. Steps of the methodological process chosen for this research. 26

Figure 5. Screenshot of the publicly available survey. 27

Figure 6. Example of a survey using a one-stage Likert Scale. 29

Figure 7. Our dashboard report using Google Data Studio. 30

Figure 8. Number of respondents from each Brazilian state. 31

Figure 9. Respondents' software development experience time. 32

Figure 10. Respondents' mobile development experience time. 32

Figure 11. Technology expertise of the respondents. 33

Figure 12. Bar chart that represents the scale regarding throw-away prototype

criterias. 35

Figure 13. Bar chart that represents the scale regarding evolutionary prototype

criterias. 37

List of Tables
Table 1. Representation of final results and criteria evaluation. 38

List of Symbols and Abbreviations
GPS – Global Positioning System

HTML – Hypertext Markup Language

CSS – Cascade Style Sheets

MVPs – Minimum Viable Product

IEEE – Institute of Electrical and Electronics Engineers

API – Application Program Interface

BPMN – Business Process Model Notation

OS – Operating System

CPU – Central Processing Unit

CEOs – Chief Executive Officer

CTOs – Chief Technology Officer

POC – Proof of Concepts

AI – Artificial Intelligence

UX – User Experience

Chapter 1
Introduction

This chapter is devoted to the presentation of this graduation thesis. Initially,

we will explain the motivation for which the proposed theme was chosen, then, we

will describe the general and specific objectives outlined for this project and, finally,

we will conclude detailing the structure of the following chapters.

1.1 Motivation
Mobile phones combining a range of different functions such as media player,

camera, and GPS (Global Positioning System) with advanced computing abilities and

touchscreens, alias Smartphones, are enjoying ever-increasing popularity. They

enable innovative mobile information systems known as mobile applications, often

referred to as apps [1].

While application development for mobile devices goes back at least 15 years,

there has been exponential growth in mobile application development since the

Apple's iPhone App Store opened in July, 2008 [2]. There are currently around

5,000,000 apps on both Apple's App Store and Android's Google Play [3] [4]

generating $1.3 trillion in revenue on 2016 and making it one of the fastest growing

markets around with over 3.5 billion users [5] as seen on Figure 1 .

Since the market of mobile operating systems for smartphones is fragmented

and rapidly changing [1] all platforms differ significantly from each other. In this

scenario, it is possible to divide mobile app development into three categories: native,

web-based, and hybrid. Native applications run on a device’s operating system and

are required to be adapted for different devices, web-based apps require a web

browser on a mobile device and hybrid apps are ‘native-wrapped’ WebApps [1] [6]

[7].

Figure 1. Mobile apps download growth from 2009 to 2017 [5].

Whenever software developers start to build any kind of application,

prototyping is a meaningful step; In any situation in which a system must be

developed from scratch, the conception itself should start in a prototyping phase. It is

well understood that undetected errors that occur in the requirements phase of

system development are the most costly to repair in later stages [8].

The main reason for prototyping is to gather knowledge and increase the

likelihood of success of a software [9] [10]. More generally, prototyping may also be

considered as a way of reducing the project risk that comes from incomplete

knowledge of what is required or how to achieve it [10] and facilitating the

requirements phase for any type of software [9].

There are two prototyping methodologies that are broadly used: throw-away

prototype, that involves building the software for testing or validation purpose when

its main features are not yet clear, and evolutionary prototype, in which the software

is built considering an architecture and features that will be reused in the future in

order to develop the full product [11].

Currently, open source projects, technical blogs and socio-professional media

are perceived as the 'key information resource' for software development [12]. The

ability to search, understand, and use this online knowledge is one of the key abilities

affecting software engineers’ efficiency and success and it is something acquired with

time and not accessible to beginner or inexperienced developers [13]. Since the

information contained on these resources are too broad, a comparative analysis

becomes necessary to novice software engineers in a short-term project or

prototypes, in order for them to accomplish their goals regarding technologies they

have never engaged with previously [14].

1.2 Goals
This study aims to gain an understanding of the current prototyping practices

in mobile app development and conduct an analysis of mobile frameworks categories

currently used by developers.

The idea behind this comparative study in form of a guideline for young or

beginner software engineers is to gather knowledge from more experienced

developers in order to create a clearer path to follow when learning a new

technology. That becomes especially useful when building prototypes, since these

projects often have shorter time to be executed and cannot have a steep learning

curve, even with its complexity [11] [15].

In order to accomplish this goal, we aim to:

● Present concepts revolving prototyping and mobile development, as well as

group them into pertinent categories to be analysed;

● Establish relevant comparison criteria that are considered when building either

a throw-away prototype or an evolutionary prototype.

● Develop and publish a survey directed to senior software engineers in order to

determine which criterias are more relevant when choosing one of two

prototyping methodologies;

● Conduct an analysis of the answers comparing current mobile frameworks

available;

● Determine which of these frameworks are more compatible to each

prototyping methodology.

1.3 Document Structure
This document is divided into five chapters: Introduction, Theoretical

Background, Methodology, Results and Conclusion. We describe each of these

sections below:

Chapter 1 - Introduction: This chapter gives an overview of the context in

which this research is inserted. It also points out the motivations in why this particular

theme was chosen, as well as describe the general objective and specific goals of

the entire thesis.

Chapter 2 - Theoretical Background: This chapter is the theoretical base to the

concepts mentioned over this entire document. Initially we describe pertinent

concepts regarding mobile development and prototyping methodologies. Next, we list

all related works that served as an inspiration to this research.

Chapter 3 - Methodology: This chapter describes all steps of the

methodological process used in this research. First, we describe the seven stage

framework used in order to produce the survey created for this research. Next, we

describe all steps regarding the demographics of the research, the construction of the

questionnaire and finally, the data analysis and tools used.

Chapter 4 - Results: This chapter presents the results regarding the survey

distributed. On the initial subsection we show the demographics of the respondents,

such as location, experience with software engineering and technology expertise.

Next, we present the results regarding the quantitative and qualitative questions

when comparing evaluation criteria among prototyping methodologies. Finally, we

discuss the findings and compare each mobile framework when considering either of

the methodologies described.

Chapter 5 - Conclusion: This chapter presents the final conclusions of the

proposed model, the limitations found in its execution and possible future work

regarding the research.

Chapter 2
Theoretical Background

The goal of this section is to present concepts regarding mobile development

frameworks for functional prototyping, as well as related scientific works explaining

their proposed approaches and its relevance.

2.1 Concepts
In order to gather a better understanding of this research, it is important to

highlight two concepts that were mentioned previously and the division of their

categories. Initially we are going to discuss the different groups regarding mobile

development and then, categories that revolve around functional prototyping

methodologies that will be mentioned in the following sections.

2.1.1 Mobile Development

In many ways, developing mobile applications is similar to software

engineering for other embedded applications. However, mobile applications present

some requirements that are less commonly found with traditional hardware

applications, including: Potential interaction with other applications, sensor handling,

'closed' security, intuitive user interfaces, optimized processing, etc [2]. These

requirements are common in mobile devices currently on the market and are seen as

positives by users when compared to other platforms [16] as shown on Figure 2 .

In order to better analyse the mobile development tools available, we chose to

categorize them into three different groups. Different frameworks produce different

outcomes but can be broadly grouped into: native development, web-based

development, and hybrid development [7]. Each approach carries inherent benefits

and limitations, and finding the one that best addresses the organization’s needs

could be a challenging task [17].

Figure 2. Comparison between smartphone usage and desktop usage [16].

Native applications run on a device’s operating system and are required to be

adapted for different devices such as Android and iOS. Web-based apps require a

powerful web browser on a mobile device that supports HTML (Hypertext Markup

Language), CSS (Cascade Style Sheets) and Javascript. The hybrid development

approach combines native development with web technology, such as Ionic, Cordova

and PhoneGap [12] [13] [17]. Even though we chose to focus on these three

divisions, there are sub-categories in each of these large groups. Each subdivision

represents small architectural changes on each largest mobile development group

that can be seen on Figure 3 .

Figure 3. Subdivisions in three large groups of mobile app development [17].

2.1.2 2Functional Prototyping

Prototyping is the process of developing a trial version of a system (a

prototype) or its components or characteristics in order to clarify the requirements of

the system or to reveal critical design considerations [18]. The primary reason for

prototyping is to acquire knowledge and thus reduce uncertainty and increase the

likelihood of success of a software project and is usually necessary in situations

where it is not known precisely what to build nor, in some cases, how to build it [10].

Selecting an appropriate development approach is crucial to building a

successful software system [11]. Prototypes can be developed either to be thrown

away after producing some insight or to evolve into the product version. Each of

these approaches has its benefits and disadvantages and the most appropriate

choice depends on the context of the effort [9].

The throw-away approach is most appropriate in the project acquisition phase

where the prototype is used to demonstrate the feasibility of a new concept and to

convince a potential sponsor to fund a proposed development project. The

evolutionary approach produces a series of prototypes in which the final version

becomes the software product. This approach depends on special tools and

techniques because it is usually not possible to evolve a prototype into production

use without significant changes to its implementation [9].

Both throw-away and evolutionary prototypes are used in many scenarios,

such as enterprise applications, academic projects, military plans [11], startup MVPs

(Minimum Viable Product) [19] as well as hackathons [20] and other short term

competitions. Although an experienced team is the best approach to guarantee a

project's success, sometimes it is necessary to start fresh in a technology that was

not yet mastered since software development often requires knowledge beyond what

developers already possess [12].

2.2 Related Work
Beynon-Davies et al. study shows prototyping has been discussed since the

late-1970s in the information system development literature, presenting the relevance

of this concept since the early software engineering days [21]. Their paper covers not

only the discussion revolving prototyping and its early processes, but also explores

the history of prototyping, and previous methodologies, such as pioneer waterfall

model.

The '11th IEEE (Institute of Electrical and Electronics Engineers) International

Workshop on Rapid System Prototyping' contains an explanatory article about rapid

system prototyping [9] as it is known today and its methodologies. Kordon et al.

explains the main reason for using prototypes: prototype versions of most systems

are much less expensive to build than the final versions. In their research, readers

also have a grasp on prototyping main approaches; when they are developed either

to be thrown away, after producing some insight, or to evolve into the product

version. Those approaches can also be seen on Gordons et al. research [11], in

which they categorize all study cases in either one of two methodologies: throw-away

or evolutionary;

Each of these approaches mentioned before has its benefits and

disadvantages and the most appropriate choice depends on the context of the effort.

Gordons et al. research uses commonalities among published case studies of rapid

prototyping in order to develop a guideline on how to use rapid prototyping effectively,

as we pay special attention to factors that contribute to the selection of one

prototyping method over another. Their research also shows the product attributes

commonly affected by prototyping and the results of all case studies related to these

attributes, such as ease of use, performance, design features, maintainability and

others that become a base to our work.

Heitkotter et al., also consolidates a list of 14 relevant criteria when comparing

different cross-platform development approaches [1], that were used when choosing

which we were going to use in this research, as well as Palmieri's study that also

raises important criterias when comparing mobile development approaches such as

programming languages, availability of APIs (Application Program Interface), etc [22].

Joorabchi et al. [7] conducts a grounded theory approach to real challenges in mobile

development, that does not contain specific criterias when comparing the results, but

rather concepts identified during the research.

Palmieri's also does a terrific job listing cross-platform frameworks and

enumerating its main advantages over native mobile development approaches. Jobe

[23] on the other hand, not only clearly explains the difference between native and

mobile WebApps, but he also compares both categories of mobile development as

well as refers practical studies that supports its theoretical basis.

Chapter 3
Survey Methodology

Considering the nature of this research goal, we started by conducting and

analyzing a survey with senior software developers, who are experts in either native

app development, WebApp development or hybrid development for both iOS and

Android platforms, followed by a discussion and a comparative study among

prevailing development technologies.

A survey is a method to collect and summarize evidence from a large

representative sample of the overall population of interest. In software engineering,

surveys are one of the most frequently used research methods for conducting

empirical investigation studies [24]. There are many studies in building an effective

survey in software engineering [25] and, in order to design and conduct a survey

research, we decided on the seven stage framework proposed by Kasunic [24].

3.1 Process Modeling
To better understand this process, we chose to model it in a graphic

representation form. We modeled the tasks according to Kasunic's framework using

BPMN (Business Process Model Notation) version 2.0 [26], since it is easy to

diagram and understand due to its objectivity in representation [27]. Its final model

can be seen on Figure 4 .

In order to facilitate the organization of this research, we will divide each of

these steps in sub chapters. The initial subsection will expose the demographics of

the research, in which we will discuss the first and second steps of the chosen

framework. The next subsection will discuss the fourth step regarding the

construction of the survey itself. The final subsection will explain the fifth, sixth and

seven steps of Kasunic’s methodology, in which we disclose the final steps of the

research such as the release of the survey and analysis of the results.

Figure 4. Steps of the methodological process based on Kasunic’s framework

[Own authorship].

3.2 Demographics of the Research
The first step is to define our research objective which was discussed initially

in the previous section. After initially defining the goal of our research, the second

step is to identify and characterize the target audience of this research. We chose the

audience as being senior software engineers, characterized by having at least 5

years of experience as a developer [28]. It was also important to consider developers

who had at least intermediate knowledge in at least two mobile technology categories

in order to gather a more generalist approach on the subject.

The next step is to design the sampling plan. We determined that the survey

would be released and disclosed mainly to software engineers residents of Recife,

Brazil, but also open to other regions of the country. That was decided based on

having a relevant sample size to our research and the location of where the survey is

being conducted, as well as guarantee the quality of the answers since part of the

answers are discursive.

3.3 Building the Questionnaire
The fourth step is to design and write the questionnaire. The survey objectives

and internal questions were translated into a portuguese carefully-worded

questionnaire and designed to facilitate analysis and interpretation. The first section

of the survey contains questions regarding the demographics of the respondents,

including the location in which the respondent resides, mobile technologies known as

well as years of experience as a developer. After this initial section, there is the

qualitative and quantitative research divided by prototyping methodology and each

evaluation criteria that will be discussed below.

Figure 5. Screenshot of the publicly available survey [Own authorship].

3.3.1 Evaluation Criteria

Our main objective is set to better categorize three largest categories for

mobile platform development when it comes to functional prototyping based on

predetermined criteria. For that matter, it is important to list each evaluation criteria

throughout the survey and match it with one of the two prototyping methodologies we

defined, alongside a justification from each professional interviewed based on their

professional experience. The evaluation criterias are:

1. Use of a know programming language and the knowledge curve to acquire

knowledge on this framework.

2. Technology community size and maturity of the framework as well as

resources available online to help initially.

3. Development and build time for each OS (Operating System), from

creating the project to actually compiling and building it on the platform.

4. Fidelity to final designed product and how easily it is to develop interfaces

designed previously before the functional prototype

5. Native user experience for mobile users and how close the application

experience approaches a native experience.

6. Maintainability which is the amount of resources to implement new features

as requested and fix bugs while on production.

7. App performance including CPU (Central Processing Unit) usage, application

loading time on user device, etc.

8. Third party APIs availability of free or open source APIs to reduce

development time.

3.3.2 Questions

The questions regarding the criteria were designed using the one-stage Likert

Scale [29] [30] in which the respondents specify their level of agreement or

disagreement on a symmetric scale from 'not important' to 'very important' for a

series of statements while responding in each of the prototyping methodologies

context, such as Figure 6 . As for the qualitative questions, they are discussive so the

respondent can comment on any of the criterias available, explain his motivation to

choose such a level of agreement as well as, in the end, suggest and justify the

addition of more relevant criterias. The final questions in this survey can be seen on

Appendix A .

Figure 6. Example of questions using a one-stage Likert Scale [Own

authorship].

3.4 Release and Analysis
The fifth step in Kasunic’s framework is to pilot test the questionnaire. It is

important to ask external experts on mobile development to review the survey in

order to make sure all questions are appropriate and easily comprehensible. The

survey presented itself as being understandable in general, but based on feedback, it

was necessary to return to the previous step and change the initial criteria before the

final pilot test was a success.

The sixth step of the chosen framework is to distribute the questionnaire, this

survey was advertised and made publicly available for one month, being constantly

advertised in social media and relevant platforms for senior software developers in

Brazil, as well as sent directly to professionals that identify as having more than 5

years of experience in mobile development on Linkedin, that is currently the largest

professional network available [31].

The last step on our model is to analyze the results and write the final report.

In order to analyze the results collected and translate them into appropriate graphical

displays that facilitate understanding, we used Google Data Studio [32], a free to use

web-based analytics tool. With Google Data Studio, it is possible to convert our

acquired quantitative data into appealing and informative reports containing charts

and graphs such as Figure 7 .

Figure 7. Our dashboard report using Google Data Studio [Own

authorship].

The combination of the initial research and the semi-structured survey resulted

in a detailed table that listed which evaluation criteria was more relevant for each

type of prototyping methodology. This outcome made our discussion regarding

mobile development framework categories and prototyping methodologies more

consistent and gave a more solid background based on the experts answers. The

final result will be discussed in the following section.

Chapter 4
Results

This chapter aims to display the results of the launched survey. Initially we

show the demographics of the research, as well as the seniority level of the

respondents. Next, we make an analysis of the quantitative and qualitative answers

and compare the chosen criterias among prototyping methodologies.

4.1 Respondents Overview
The survey was available for a whole month and was disclosed in different

online streams, such as Linkedin, Facebook and Telegram. During this time, the

questionnaire gathered 50 answers from several cities and experience levels. Even

though it was initially directed to mobile developers residents of Recife, Brazil,

software engineers from all regions of Brazil answered and gave their input as shown

in Figure 8 .

Figure 8. Number of respondents from each Brazilian state [Own authorship].

From all survey respondents 86% had a development role within their

company. Other roles included consultants, CEOs (Chief Executive Officer) and

CTOs (Chief Technology Officer), all of those had at least intermediate experience in

any of the technologies stated. Over 63% characterized as being a senior software

developer (Figure 9), possessing more than 5 years development experience and

28% of those also had the same amount of experience regarding mobile

development (Figure 10).

Figure 9. Respondents' software development experience time [Own authorship].

Figure 10. Respondents' mobile development experience time [Own authorship].

A great majority declared having advanced knowledge in native mobile

development (either Android or iOS), while hybrid and WebApp development gather

less experts on the matter (Figure 11). Intermediate knowledge in at least two of the

framework groups was an important factor when considering the most relevant

answers. Around 60% of the respondents satisfied this condition.

Figure 11. Technology expertise of the respondents [Own authorship].

From all respondents, 86% stated they have had previous experience with

prototyping methodologies for mobile development. They were mostly commercial

POCs (Proof of Concepts), but other applications included academic projects and

MVPs. They were asked to briefly describe their projects and what frameworks and

APIs were used.

One interesting fact was that many of the respondents mentioned

non-functional prototyping tools when the application developed only required screen

navigation. Another interesting insight was to see how AI (Artificial Intelligence) plays

a big role on prototyping methodologies; most of the respondents that prototyped an

AI driven system used native development to develop such applications with a wide

range of APIs. In general, the survey turned out to demonstrate a distinct range of

applications and methodologies experience among respondents, confirming the

participation of a diverse public, as we aimed for in this research.

4.2 Data Analysis
In this subsection, we will analyse the answers given based on the Likert

Scale, as mentioned in the previous chapter. In order to enhance the visual

experiences, we created graphics based on the final score of each evaluation criteria.

The scale is represented by integers 1-5 as 1 representing 'not important' and 5

representing 'extremely important' and the final results can be seen on Figure 12 for

throw-away methodology and on Figure 13 for evolutionary methodology.

4.2.1 Throw-away Prototype Data

It was unanimity among all respondents that 'development and build time for

each OS' criteria was important in at least some level compared to others, making it

the most relevant for this prototyping methodology, as seen on Figure 12 . According

to the qualitative answers of the participants, it is usually not worth to spend neither

money nor time in a system that is going to be discontinued, hence, the need for the

application to be developed as fast as possible.

There were three criterias that were between the 'moderately important' and

'very important' zone. 'use of a known programming language' was the second most

important criteria; respondents stated that, since throw-away prototypes are usually

about testing and implementing a feature that is obscure to the developer, the use of

a familiar programming language is preferential and makes the task smoother.

Figure 12. Bar chart that represents the scale regarding throw-away prototype

criterias [Own authorship].

The next criterias were 'technology community size' and 'fidelity to final

designed product'. Both of these criterias, even though occupying relevant positions

on the list, had controversial opinions. A part of the respondents stated that the

community size was not important in the long run since many of the features

contained within the application did not need to be functional, as another part said

that it was important since documented problems could help optimize the

development time of the application. Regarding ‘fidelity to the final product’, it was

stated that it is important only if the interface needs validation, otherwise, it should

not matter compared to other criterias.

The least relevant criterias were between ‘reasonably important’ and

‘moderately important’ marks. ‘native user experience’ was considered reasonably

important if the goal of the prototype is to validate UX (User Experience) like the

previous criteria mentioned. Even though the numbers showed that ‘third party APIs

availability’ is not high ranked among the criterias, respondents advocated in favor,

since these interfaces drastically decrease development time.

The criterias on the bottom of the list were ‘maintainability’ and ‘app

performance’. Since a throw-away prototype is built to be disposable, this criterias did

not show relevance according to the respondents since they are not part of a final

product. Both 'maintainability' and 'app performance' influence mainly on user

retention of market applications. Since a throw-away prototype is not designed to

move on this phase, these criterias are not important.

4.2.2 Evolutionary Prototype Data

Evolutionary prototype data showed to be extremely divergent from the

previous methodology. While throw-away criterias demonstrated to be cleared

defined along the scale, evolutionary criterias were all considered important at some

level. For that reason we will be discussing the criterias between 'extremely

important' and 'very important' then the criterias that classified between 'reasonably

important' and 'very important' as seen on Figure 13 .

According to the respondents, the most highly ranked criteria was

'maintainability''. Since the code developed on the prototype is going to be reused,

maintenance costs should be as low as possible since the prototype should always

be evolving when adding new features without drastic structural changes. It was also

pointed out that spending more time on the beginning of the prototype defining a

robust architecture means saving time and money when it grows into the actual

product.

The second most important criteria was ‘fidelity to final product’. According to

respondents, since the app market is extremely competitive, users demand high

quality in applications they download and retain on the phones. A bad layout means

the brand loses credibility among its users. For that reason, the layout of the

prototype has to be as faithful to the designed product as possible since the early

stages.

Figure 13. Bar chart that represents the scale regarding evolutionary prototype

criterias [Own authorship].

Next, respondents said that ‘app performance’ is not necessarily important in

the initial interactions of the prototype, but it should be a concern as soon as the

initial prototype version is released. As for the programming language chosen, it was

unanimous that it should reflect the project’s goals instead of the developer’s

knowledge. It was also stated that it is important to know the limitations of the

language and framework chosen from the beginning of the project to avoid future

setbacks when the prototype evolves into a product. ‘Native user experience’ was

considered important but it was pointed out that a native interface does not

necessary means ergonomic, therefore, the layout itself was considered a priority.

The criterias between 'reasonably important' and 'very important' had a very

similar score. ‘Develop and build time’ was the next ranked criteria. Respondents

said that time should not be a priority when it comes to the evolutionary methodology

since evolving a prototype means compromising to taking initial time to plan rather

than building the application fast. It was also stated that the time is not as important

as the highest ranked criterias and, if necessary, time should be compromised

instead of the app’s layout and performance.

‘Technology community size’ was the next criteria. Even though it was ranked

lower, respondents showed interest in a mature community when choosing a

framework since it might save time when evolving the prototype. The last rated

criteria was ‘third party API availability’. Even though APIs might be beneficial

regarding development time, it is not as important when compared to other criterias

since the framework chosen is independent of APIs, therefore, not a meaningful

factor in a long term methodology.

4.3 Discussion
In this subsection we aim to compare both prototyping criterias with one

another, rather than discuss them individually. In order to visualize the results of this

research, we chose to demonstrate them in Table 1 , stating the importance of each

criteria for each prototyping methodology. We will also compare each framework

category based on the final outcome of the survey.

Table 1. Representation of final results and criteria evaluation [Own authorship].

Criteria Description Throw-away
Relevance

Evolutionary
Relevance

1 Programming

language

The knowledge curve to acquire

knowledge on this framework.

Moderately

important

Very
important

2 Community

size

Maturity of the framework and

resources available online to help.

Moderately

important

Moderately

important

3 Development

time

Development time from creating

the project to building.

Very
important

Moderately

important

4 Fidelity to final

product

How easily it is to develop

interfaces designed previously.

Moderately

important

Very
important

5 Native user

experience

How close the application

approaches a native experience.

Reasonably

important

Moderately

important

6 Maintainability Resources to implement new

features and fix bugs on production

Reasonably

important

Very
important

7 App

performance

CPU usage, application loading

time on user device, etc.

Reasonably

important

Very
important

8 APIs

availability

Free or open source APIs available

to reduce development time.

Reasonably

important

Moderately

important

A criteria that was not mentioned on the survey’s options but showed to have

value for throw-away prototypes was 'framework license type'. This criterias regards

the monetary cost to develop an application that is similar to ‘development time’ that

regards development time cost. Since company backed-up frameworks are usually

more expensive and requires a licence, open-source frameworks are preferred by

developers when building throw-away prototype.

Respondents also stated the difference among frameworks when building

non-functional throw-away prototypes. iOS development showed itself to be a favorite

among participants due to its ease of development and short time to build

applications if a prototype requires only screen or UX validation. It was also stated

that a non-functional framework could be used in order to save development time,

since it requires very little skills to build interactive apps.

In general, respondents approved the use of a throw-away prototype when

building features that require validation. That could be technical features that are part

of a complex system or a small application that needs to be tested with its potential

users. Either way, most of the respondents not only had used this prototyping

methodology before, they also strongly recommend it in the scenarios previously

mentioned.

When comparing both prototyping methodologies, respondents attributed more

importance to all the criterias in evolutionary prototype when compared to

throw-away prototype. Since the code written in the prototype will be part of the final

product, every one of the criterias must be carefully evaluated since they are

requirements in market level applications.

A criterion that was not mentioned as survey option but demonstrated

importance for evolutionary prototype was ‘technology market life’. This refers to the

time the framework has been on the market and was considered important since the

prototype in this methodology aims to become final, therefore, a framework that has

been on the market longer is consequently more mature.. This criteria showed itself

to be similar to ‘technology maturity size’ that represents how active are the users of

this framework.

Even though a big portion of the respondents had built an evolutionary

prototype before, this methodology was also not recommended by a few of them

when compared to throw-away prototype. Evolutionary prototypes might delay

development time on features that need technical validation, such as complex or

robust systems. Since features evolve with the entire application, wrong decisions

can easily echo into the final product compromising time and money.

Part of the respondents stated otherwise, recommending evolutionary

prototype as much as throw-away. If the time available to develop the entire

application from scratch is short, the evolutionary prototype is a great approach.

According to respondents, when this methodology is used correctly it can optimize

development time if using a framework that develops and deploys for all OS such as

hybrid or WebApp development.

Chapter 5
Conclusion

In this paper, we had the opportunity to apply a theoretical methodology into a

survey that was sent and answers by dozens of developers across Brazil. With this

research, we had a more practical grasp into what criterias modern software engineer

consider when choosing the appropriate framework. It was interesting to observe the

diverse range of expertise respondents had, raising very distinct answers and

anecdotes.

The importance of this subject is clear since prototypes, such as MVPs and

proofs of concepts, are becoming an essential step when building software as a

whole. This happens due to the popularization of agile methodologies and design

process when building applications, therefore, prototyping methodologies had shown

themselves to be in an exponential growth.

With the dissemination of internet forums and development blogs, the

information is becoming more diffuse and spread out. This makes it difficult for junior

software engineers to find information such as the one approached in this work. We

can also see the importance of researchers such as this one, in order to bring expert

knowledge to novice developers in order to leverage the market regarding mobile

technologies.

In our work, we made it easier for developers to seek the best approach for

their prototypes based on the acquired answers on this survey. We did not conclude

which frameworks are better for each scenario since it depends on a series of factors

such as criterias priority, development team expertise, concepts that need to be

proven, etc. Even thought, putting together these criterias as well as their importance

when compared to each other will have a very positive impact in the next phase of

this work, in order to build a complete guideline regarding mobile development and

prototyping methodologies.

3.1 Future Work
This work has potential to scale in many different ways. Initially it would be

interesting to launch a second survey following this one with mobile framework

categories. In this next phase, developers would cite which frameworks are better for

each prototyping methodology, through the match with the defined criterias. This way,

we would have concrete answers in which frameworks work best for either

throw-away or evolutionary prototype.

In order to grasp a better understanding of a worldwide context, it would be

necessary to distribute this survey in other regions of the globe. Stackoverflow and

Github are two platforms broadly used by developers that could be used to circulate

the survey in english to other countries, as well as in different languages to have a

wider range of answers.

It would also be possible to launch this prototyping research to other

development platforms. Since prototyping is used in any scenario a system must be

built from scratch, we could apply the concepts seen on this survey to other areas. In

order to shorten the scope, mobile development was used in our paper, but it would

be interesting to see how developers find these criterias adjust web development,

desktop development and others.

References
[1] HEITKÖTTER, Henning; HANSCHKE, Sebastian; MAJCHRZAK, Tim A.

Evaluating cross-platform development approaches for mobile applications .
In: International Conference on Web Information Systems and Technologies.
Springer, Berlin, Heidelberg, 2012. p. 120-138.

[2] WASSERMAN, Tony. Software engineering issues for mobile application
development . FoSER 2010, 2010.

[3] App Store Metrics. 148Apps , 2019. Available on:
< http://148apps.biz/app-store-metrics/ >. Accessed on: April 4, 2019:

[4] Android Market Stats. AppBrain , 2019. Available on:
< http://www.appbrain.com/stats/ >. Accessed on: April 4, 2019.

[5] App economy to grow to $6.3 trillion in 2021, user base to nearly double to 6.3
billion. Techcrunch , 2017. Available on:
< https://techcrunch.com/2017/06/27/app-economy-to-grow-to-6-3-trillion-in-2021-
user-base-to-nearly-double-to-6-3-billion/ >. Accessed on: April 4, 2019

[6] E. Masi, G. Cantone, M. Mastrofini, G. Calavaro, and P. Subiaco, Mobile apps
development: A framework for technology decision making , in Proceedings
of International Conference on Mobile Computing, Applications, and Services.,
ser. MobiCASE’4, 2012, pp. 64–79.

[7] JOORABCHI, Mona Erfani; MESBAH, Ali; KRUCHTEN, Philippe. Real
challenges in mobile app development . In: 2013 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. IEEE, 2013. p.
15-24.

[8] CAREY, T. T.; MASON, R. E. A. Information system prototyping: techniques,
tools, and methodologies . INFOR: Information Systems and Operational
Research, v. 21, n. 3, p. 177-191, 1983.

[9] KORDON, Fabrice et al. An introduction to rapid system prototyping . IEEE
Transactions on Software Engineering, v. 28, n. 9, p. 817-821, 2002.

[10] TATE, G. Prototyping: helping to build the right software . Information and
Software Technology, v. 32, n. 4, p. 237-244, 1990.

[11] GORDON, V. Scott; BIEMAN, James M. Rapid prototyping: lessons
learned . IEEE software, v. 12, n. 1, p. 85-95, 1995.

http://148apps.biz/app-store-metrics/
http://www.appbrain.com/stats/
https://techcrunch.com/2017/06/27/app-economy-to-grow-to-6-3-trillion-in-2021-user-base-to-nearly-double-to-6-3-billion/
https://techcrunch.com/2017/06/27/app-economy-to-grow-to-6-3-trillion-in-2021-user-base-to-nearly-double-to-6-3-billion/

[12] LI, Hongwei et al. What help do developers seek, when and how? . In: 2013
20th Working Conference on Reverse Engineering (WCRE). IEEE, 2013. p.
142-151.

[13] TENOPIR, Carol; KING, Donald W. Communication patterns of engineers .
John Wiley & Sons, 2004.

[14] HOLMES, Reid et al. The end-to-end use of source code examples: An
exploratory study . In: 2009 IEEE International Conference on Software
Maintenance. IEEE, 2009. p. 555-558.

[15] U.S. Dept. of Veterans Affairs. Veterans Affairs , 2019. Available on:
< http://www.va.gov/trm/TRMGlossaryPage.asp >. Accessed on: April 5, 2019.

[16] Your Smartphone vs your PC. AVI , 2017. Available on:
< https://www.avi-b.com/your-smartphone-vs-your-pc/ >. Accessed on: April 24,
2019.

[17] Native, web or hybrid mobile-app development. IBM Software , Thought
Leadership White Paper, 2012. Available on:
< http://www.computerworld.com.au/whitepaper/371126/native-web-or-hybrid-mobi
le-app-development/download/ >. Accessed on April 24, 2019.

[18] GORDON, V. Scott; BIEMAN, James M. Reported effects of rapid
prototyping on industrial software quality . Software Quality Journal, v. 2, n. 2,
p. 93-108, 1993.

[19] DUC, Anh Nguyen; ABRAHAMSSON, Pekka. Minimum viable product or
multiple facet product? The Role of MVP in software startups . In:
International Conference on Agile Software Development. Springer, Cham, 2016.
p. 118-130.

[20] BRISCOE, Gerard. Digital innovation: The hackathon phenomenon . 2014.

[21] BEYNON-DAVIES, Paul; TUDHOPE, Douglas; MACKAY, Hugh. Information
systems prototyping in practice . Journal of Information Technology, v. 14, n. 1,
p. 107-120, 1999.

[22] PALMIERI, Manuel; SINGH, Inderjeet; CICCHETTI, Antonio. Comparison of
cross-platform mobile development tools . In: 2012 16th International
Conference on Intelligence in Next Generation Networks. IEEE, 2012. p. 179-186.

[23] JOBE, William. Native Apps vs. Mobile Web Apps . International Journal of
Interactive Mobile Technologies, v. 7, n. 4, 2013.

http://www.va.gov/trm/TRMGlossaryPage.asp
https://www.avi-b.com/your-smartphone-vs-your-pc/
http://www.computerworld.com.au/whitepaper/371126/native-web-or-hybrid-mobile-app-development/download/
http://www.computerworld.com.au/whitepaper/371126/native-web-or-hybrid-mobile-app-development/download/

[24] M. Kasunic. Designing an effective survey . Technical report, DTIC
Document, 2005.

[25] MOLLÉRI, Jefferson Seide; PETERSEN, Kai; MENDES, Emilia. Survey
guidelines in software engineering: An annotated review . In: Proceedings of
the 10th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement. ACM, 2016. p. 58.

[26] O. M. G. Omg, R. Parida, and S. Mahapatra. Business Process Model and
Notation (BPMN) Version 2.0 . Technical Report January, 2011.

[27] TANG, Stephen et al. Towards a domain specific modelling language for
serious game design . In: 6th International Game Design and Technology
Workshop, Liverpool, UK. 2008.

[28] Average Senior Software Engineer Salary. Payscale , 2019. Available on:
< https://www.payscale.com/research/US/Job=Senior_Software_Engineer/Salary >
Accessed on: April 26, 2019.

[29] LIKERT, Rensis. A technique for the measurement of attitudes . Archives of
psychology, 1932.

[30] ALBAUM, Gerald. The Likert scale revisited . Market Research Society.
Journal., v. 39, n. 2, p. 1-21, 1997.

[31] About Linkedin. Linkedin , 2019. Available on: < https://about.linkedin.com/ >.
Accessed on: May 3, 2019.

[32] Google Data Studio. Google , 2019. Available on:
< https://datastudio.google.com/u/0/ >. Accessed on: May 3, 2019.

https://www.payscale.com/research/US/Job=Senior_Software_Engineer/Salary
https://about.linkedin.com/
https://datastudio.google.com/u/0/

A. Survey Questions
The data collection tool for this research was a public survey that can be found

in this link: https://forms.gle/zED3uH8ePwwZR24T7. The first section of the survey

contains questions regarding the demographics of the respondents and the second

section there is the qualitative and quantitative research divided by prototyping

methodology and each evaluation criteria defined previously.

Semi-structured survey questions:

1. Where do you live? (City/State/Country)

2. What’s your gender?

a. Male

b. Female

c. Others

3. How many years of software development experience do you have?

a. Less than 1 year

b. 2 years

c. 3 years

d. 4 years

e. 5 years or more

4. And how many years of mobile development experience do you have?

a. Less than 1 year

b. 2 years

c. 3 years

d. 4 years

e. 5 years or more

5. What’s your current role and company?

6. Define your knowledge on each of these mobile development

categories:

a. Native (Android or iOS).

b. Hybrid (Ionic, Xamarin, React Native, etc).

c. WebApp (Angular, React, Vue).

7. Have you ever prototyped a mobile application before?

a. Yes

b. No

8. If yes, can you briefly describe its main features?

9. What frameworks, APIs and technologies were used?

10. In a scenario in which you have to build a throwaway prototype and the

code will not be used afterwards, how relevant do you consider each of

these criterias when choosing a framework?

a. Required skills to develop applications due to a known

programming languages.

b. Technology community size.

c. Development and build time for each OS.

d. Fidelity to final designed product.

e. Native user experience for mobile users.

f. Maintainability and the cost of implementing new features.

g. App performance such as CPU usage and loading time.

h. Availability of third party APIs.

11. Can you elaborate about your choices above?

12. In a scenario in which you have to build an evolutionary prototype,

maintaining its architecture and infrastructure so the code can be used

afterwards, how relevant do you consider each of these criterias when

choosing a framework?

a. Required skills to develop applications due to a known

programming languages.

b. Technology community size.

c. Development and build time for each OS.

d. Fidelity to final designed product.

e. Native user experience for mobile users.

f. Maintainability and the cost of implementing new features.

g. App performance such as CPU usage and loading time.

h. Availability of third party APIs.

13.Can you elaborate about your choices above?

14.Do you think any criteria was missing? If yes, which ones and why?

